| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nelfb |  |-  ( F e. ( fBas ` B ) -> -. (/) e. F ) | 
						
							| 2 |  | fveq2 |  |-  ( B = (/) -> ( fBas ` B ) = ( fBas ` (/) ) ) | 
						
							| 3 | 2 | eleq2d |  |-  ( B = (/) -> ( F e. ( fBas ` B ) <-> F e. ( fBas ` (/) ) ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( B = (/) -> ( F e. ( fBas ` B ) -> F e. ( fBas ` (/) ) ) ) | 
						
							| 5 |  | fbasne0 |  |-  ( F e. ( fBas ` (/) ) -> F =/= (/) ) | 
						
							| 6 |  | n0 |  |-  ( F =/= (/) <-> E. x x e. F ) | 
						
							| 7 | 5 6 | sylib |  |-  ( F e. ( fBas ` (/) ) -> E. x x e. F ) | 
						
							| 8 |  | fbelss |  |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x C_ (/) ) | 
						
							| 9 |  | ss0 |  |-  ( x C_ (/) -> x = (/) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x = (/) ) | 
						
							| 11 |  | simpr |  |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x e. F ) | 
						
							| 12 | 10 11 | eqeltrrd |  |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> (/) e. F ) | 
						
							| 13 | 7 12 | exlimddv |  |-  ( F e. ( fBas ` (/) ) -> (/) e. F ) | 
						
							| 14 | 4 13 | syl6com |  |-  ( F e. ( fBas ` B ) -> ( B = (/) -> (/) e. F ) ) | 
						
							| 15 | 14 | necon3bd |  |-  ( F e. ( fBas ` B ) -> ( -. (/) e. F -> B =/= (/) ) ) | 
						
							| 16 | 1 15 | mpd |  |-  ( F e. ( fBas ` B ) -> B =/= (/) ) |