| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nelfb | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝐵  =  ∅  →  ( fBas ‘ 𝐵 )  =  ( fBas ‘ ∅ ) ) | 
						
							| 3 | 2 | eleq2d | ⊢ ( 𝐵  =  ∅  →  ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ↔  𝐹  ∈  ( fBas ‘ ∅ ) ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( 𝐵  =  ∅  →  ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  𝐹  ∈  ( fBas ‘ ∅ ) ) ) | 
						
							| 5 |  | fbasne0 | ⊢ ( 𝐹  ∈  ( fBas ‘ ∅ )  →  𝐹  ≠  ∅ ) | 
						
							| 6 |  | n0 | ⊢ ( 𝐹  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝐹  ∈  ( fBas ‘ ∅ )  →  ∃ 𝑥 𝑥  ∈  𝐹 ) | 
						
							| 8 |  | fbelss | ⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ⊆  ∅ ) | 
						
							| 9 |  | ss0 | ⊢ ( 𝑥  ⊆  ∅  →  𝑥  =  ∅ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  𝑥  =  ∅ ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ∈  𝐹 ) | 
						
							| 12 | 10 11 | eqeltrrd | ⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  ∅  ∈  𝐹 ) | 
						
							| 13 | 7 12 | exlimddv | ⊢ ( 𝐹  ∈  ( fBas ‘ ∅ )  →  ∅  ∈  𝐹 ) | 
						
							| 14 | 4 13 | syl6com | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ( 𝐵  =  ∅  →  ∅  ∈  𝐹 ) ) | 
						
							| 15 | 14 | necon3bd | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ( ¬  ∅  ∈  𝐹  →  𝐵  ≠  ∅ ) ) | 
						
							| 16 | 1 15 | mpd | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  𝐵  ≠  ∅ ) |