Description: Sufficient condition for a set of the form { x e. ~P A | ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015) (Revised by AV, 10-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfild.1 | |
|
isfild.2 | |
||
isfild.3 | |
||
isfild.4 | |
||
isfild.5 | |
||
isfild.6 | |
||
Assertion | isfild | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfild.1 | |
|
2 | isfild.2 | |
|
3 | isfild.3 | |
|
4 | isfild.4 | |
|
5 | isfild.5 | |
|
6 | isfild.6 | |
|
7 | velpw | |
|
8 | 7 | biimpri | |
9 | 8 | adantr | |
10 | 1 9 | syl6bi | |
11 | 10 | ssrdv | |
12 | 1 2 | isfildlem | |
13 | simpr | |
|
14 | 12 13 | syl6bi | |
15 | 4 14 | mtod | |
16 | ssid | |
|
17 | 3 16 | jctil | |
18 | 1 2 | isfildlem | |
19 | 17 18 | mpbird | |
20 | 11 15 19 | 3jca | |
21 | elpwi | |
|
22 | simp2 | |
|
23 | 5 22 | jctild | |
24 | 23 | adantld | |
25 | 1 2 | isfildlem | |
26 | 25 | 3ad2ant1 | |
27 | 1 2 | isfildlem | |
28 | 27 | 3ad2ant1 | |
29 | 24 26 28 | 3imtr4d | |
30 | 29 | 3expa | |
31 | 30 | impancom | |
32 | 31 | rexlimdva | |
33 | 32 | ex | |
34 | 21 33 | syl5 | |
35 | 34 | ralrimiv | |
36 | ssinss1 | |
|
37 | 36 | ad2antrr | |
38 | 37 | a1i | |
39 | an4 | |
|
40 | 6 | 3expb | |
41 | 40 | expimpd | |
42 | 39 41 | biimtrid | |
43 | 38 42 | jcad | |
44 | 27 25 | anbi12d | |
45 | 1 2 | isfildlem | |
46 | 43 44 45 | 3imtr4d | |
47 | 46 | ralrimivv | |
48 | isfil2 | |
|
49 | 20 35 47 48 | syl3anbrc | |