Metamath Proof Explorer


Theorem isfild

Description: Sufficient condition for a set of the form { x e. ~P A | ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015) (Revised by AV, 10-Apr-2024)

Ref Expression
Hypotheses isfild.1 φxFxAψ
isfild.2 φAV
isfild.3 φ[˙A/x]˙ψ
isfild.4 φ¬[˙/x]˙ψ
isfild.5 φyAzy[˙z/x]˙ψ[˙y/x]˙ψ
isfild.6 φyAzA[˙y/x]˙ψ[˙z/x]˙ψ[˙yz/x]˙ψ
Assertion isfild φFFilA

Proof

Step Hyp Ref Expression
1 isfild.1 φxFxAψ
2 isfild.2 φAV
3 isfild.3 φ[˙A/x]˙ψ
4 isfild.4 φ¬[˙/x]˙ψ
5 isfild.5 φyAzy[˙z/x]˙ψ[˙y/x]˙ψ
6 isfild.6 φyAzA[˙y/x]˙ψ[˙z/x]˙ψ[˙yz/x]˙ψ
7 velpw x𝒫AxA
8 7 biimpri xAx𝒫A
9 8 adantr xAψx𝒫A
10 1 9 syl6bi φxFx𝒫A
11 10 ssrdv φF𝒫A
12 1 2 isfildlem φFA[˙/x]˙ψ
13 simpr A[˙/x]˙ψ[˙/x]˙ψ
14 12 13 syl6bi φF[˙/x]˙ψ
15 4 14 mtod φ¬F
16 ssid AA
17 3 16 jctil φAA[˙A/x]˙ψ
18 1 2 isfildlem φAFAA[˙A/x]˙ψ
19 17 18 mpbird φAF
20 11 15 19 3jca φF𝒫A¬FAF
21 elpwi y𝒫AyA
22 simp2 φyAzyyA
23 5 22 jctild φyAzy[˙z/x]˙ψyA[˙y/x]˙ψ
24 23 adantld φyAzyzA[˙z/x]˙ψyA[˙y/x]˙ψ
25 1 2 isfildlem φzFzA[˙z/x]˙ψ
26 25 3ad2ant1 φyAzyzFzA[˙z/x]˙ψ
27 1 2 isfildlem φyFyA[˙y/x]˙ψ
28 27 3ad2ant1 φyAzyyFyA[˙y/x]˙ψ
29 24 26 28 3imtr4d φyAzyzFyF
30 29 3expa φyAzyzFyF
31 30 impancom φyAzFzyyF
32 31 rexlimdva φyAzFzyyF
33 32 ex φyAzFzyyF
34 21 33 syl5 φy𝒫AzFzyyF
35 34 ralrimiv φy𝒫AzFzyyF
36 ssinss1 yAyzA
37 36 ad2antrr yA[˙y/x]˙ψzA[˙z/x]˙ψyzA
38 37 a1i φyA[˙y/x]˙ψzA[˙z/x]˙ψyzA
39 an4 yA[˙y/x]˙ψzA[˙z/x]˙ψyAzA[˙y/x]˙ψ[˙z/x]˙ψ
40 6 3expb φyAzA[˙y/x]˙ψ[˙z/x]˙ψ[˙yz/x]˙ψ
41 40 expimpd φyAzA[˙y/x]˙ψ[˙z/x]˙ψ[˙yz/x]˙ψ
42 39 41 biimtrid φyA[˙y/x]˙ψzA[˙z/x]˙ψ[˙yz/x]˙ψ
43 38 42 jcad φyA[˙y/x]˙ψzA[˙z/x]˙ψyzA[˙yz/x]˙ψ
44 27 25 anbi12d φyFzFyA[˙y/x]˙ψzA[˙z/x]˙ψ
45 1 2 isfildlem φyzFyzA[˙yz/x]˙ψ
46 43 44 45 3imtr4d φyFzFyzF
47 46 ralrimivv φyFzFyzF
48 isfil2 FFilAF𝒫A¬FAFy𝒫AzFzyyFyFzFyzF
49 20 35 47 48 syl3anbrc φFFilA