Description: Lemma for isfild . (Contributed by Mario Carneiro, 1-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfild.1 | |
|
isfild.2 | |
||
Assertion | isfildlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfild.1 | |
|
2 | isfild.2 | |
|
3 | elex | |
|
4 | 3 | a1i | |
5 | ssexg | |
|
6 | 5 | expcom | |
7 | 2 6 | syl | |
8 | 7 | adantrd | |
9 | eleq1 | |
|
10 | sseq1 | |
|
11 | dfsbcq | |
|
12 | 10 11 | anbi12d | |
13 | 9 12 | bibi12d | |
14 | 13 | imbi2d | |
15 | nfv | |
|
16 | nfv | |
|
17 | nfv | |
|
18 | nfsbc1v | |
|
19 | 17 18 | nfan | |
20 | 16 19 | nfbi | |
21 | 15 20 | nfim | |
22 | eleq1 | |
|
23 | sseq1 | |
|
24 | sbceq1a | |
|
25 | 23 24 | anbi12d | |
26 | 22 25 | bibi12d | |
27 | 26 | imbi2d | |
28 | 21 27 1 | chvarfv | |
29 | 14 28 | vtoclg | |
30 | 29 | com12 | |
31 | 4 8 30 | pm5.21ndd | |