Metamath Proof Explorer


Theorem isfildlem

Description: Lemma for isfild . (Contributed by Mario Carneiro, 1-Dec-2013)

Ref Expression
Hypotheses isfild.1 φxFxAψ
isfild.2 φAV
Assertion isfildlem φBFBA[˙B/x]˙ψ

Proof

Step Hyp Ref Expression
1 isfild.1 φxFxAψ
2 isfild.2 φAV
3 elex BFBV
4 3 a1i φBFBV
5 ssexg BAAVBV
6 5 expcom AVBABV
7 2 6 syl φBABV
8 7 adantrd φBA[˙B/x]˙ψBV
9 eleq1 y=ByFBF
10 sseq1 y=ByABA
11 dfsbcq y=B[˙y/x]˙ψ[˙B/x]˙ψ
12 10 11 anbi12d y=ByA[˙y/x]˙ψBA[˙B/x]˙ψ
13 9 12 bibi12d y=ByFyA[˙y/x]˙ψBFBA[˙B/x]˙ψ
14 13 imbi2d y=BφyFyA[˙y/x]˙ψφBFBA[˙B/x]˙ψ
15 nfv xφ
16 nfv xyF
17 nfv xyA
18 nfsbc1v x[˙y/x]˙ψ
19 17 18 nfan xyA[˙y/x]˙ψ
20 16 19 nfbi xyFyA[˙y/x]˙ψ
21 15 20 nfim xφyFyA[˙y/x]˙ψ
22 eleq1 x=yxFyF
23 sseq1 x=yxAyA
24 sbceq1a x=yψ[˙y/x]˙ψ
25 23 24 anbi12d x=yxAψyA[˙y/x]˙ψ
26 22 25 bibi12d x=yxFxAψyFyA[˙y/x]˙ψ
27 26 imbi2d x=yφxFxAψφyFyA[˙y/x]˙ψ
28 21 27 1 chvarfv φyFyA[˙y/x]˙ψ
29 14 28 vtoclg BVφBFBA[˙B/x]˙ψ
30 29 com12 φBVBFBA[˙B/x]˙ψ
31 4 8 30 pm5.21ndd φBFBA[˙B/x]˙ψ