Metamath Proof Explorer


Theorem isfildlem

Description: Lemma for isfild . (Contributed by Mario Carneiro, 1-Dec-2013)

Ref Expression
Hypotheses isfild.1 ( 𝜑 → ( 𝑥𝐹 ↔ ( 𝑥𝐴𝜓 ) ) )
isfild.2 ( 𝜑𝐴𝑉 )
Assertion isfildlem ( 𝜑 → ( 𝐵𝐹 ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 isfild.1 ( 𝜑 → ( 𝑥𝐹 ↔ ( 𝑥𝐴𝜓 ) ) )
2 isfild.2 ( 𝜑𝐴𝑉 )
3 elex ( 𝐵𝐹𝐵 ∈ V )
4 3 a1i ( 𝜑 → ( 𝐵𝐹𝐵 ∈ V ) )
5 ssexg ( ( 𝐵𝐴𝐴𝑉 ) → 𝐵 ∈ V )
6 5 expcom ( 𝐴𝑉 → ( 𝐵𝐴𝐵 ∈ V ) )
7 2 6 syl ( 𝜑 → ( 𝐵𝐴𝐵 ∈ V ) )
8 7 adantrd ( 𝜑 → ( ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) → 𝐵 ∈ V ) )
9 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝐹𝐵𝐹 ) )
10 sseq1 ( 𝑦 = 𝐵 → ( 𝑦𝐴𝐵𝐴 ) )
11 dfsbcq ( 𝑦 = 𝐵 → ( [ 𝑦 / 𝑥 ] 𝜓[ 𝐵 / 𝑥 ] 𝜓 ) )
12 10 11 anbi12d ( 𝑦 = 𝐵 → ( ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) )
13 9 12 bibi12d ( 𝑦 = 𝐵 → ( ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) ↔ ( 𝐵𝐹 ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) ) )
14 13 imbi2d ( 𝑦 = 𝐵 → ( ( 𝜑 → ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝐵𝐹 ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) )
15 nfv 𝑥 𝜑
16 nfv 𝑥 𝑦𝐹
17 nfv 𝑥 𝑦𝐴
18 nfsbc1v 𝑥 [ 𝑦 / 𝑥 ] 𝜓
19 17 18 nfan 𝑥 ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 )
20 16 19 nfbi 𝑥 ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) )
21 15 20 nfim 𝑥 ( 𝜑 → ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) )
22 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐹𝑦𝐹 ) )
23 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
24 sbceq1a ( 𝑥 = 𝑦 → ( 𝜓[ 𝑦 / 𝑥 ] 𝜓 ) )
25 23 24 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) )
26 22 25 bibi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐹 ↔ ( 𝑥𝐴𝜓 ) ) ↔ ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) ) )
27 26 imbi2d ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥𝐹 ↔ ( 𝑥𝐴𝜓 ) ) ) ↔ ( 𝜑 → ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) ) ) )
28 21 27 1 chvarfv ( 𝜑 → ( 𝑦𝐹 ↔ ( 𝑦𝐴[ 𝑦 / 𝑥 ] 𝜓 ) ) )
29 14 28 vtoclg ( 𝐵 ∈ V → ( 𝜑 → ( 𝐵𝐹 ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) ) )
30 29 com12 ( 𝜑 → ( 𝐵 ∈ V → ( 𝐵𝐹 ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) ) )
31 4 8 30 pm5.21ndd ( 𝜑 → ( 𝐵𝐹 ↔ ( 𝐵𝐴[ 𝐵 / 𝑥 ] 𝜓 ) ) )