| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfild.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) |
| 2 |
|
isfild.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
elex |
⊢ ( 𝐵 ∈ 𝐹 → 𝐵 ∈ V ) |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝐹 → 𝐵 ∈ V ) ) |
| 5 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ∈ V ) |
| 6 |
5
|
expcom |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ V ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ V ) ) |
| 8 |
7
|
adantrd |
⊢ ( 𝜑 → ( ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) → 𝐵 ∈ V ) ) |
| 9 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹 ) ) |
| 10 |
|
sseq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 11 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐵 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑥 ] 𝜓 ) ) |
| 12 |
10 11
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) |
| 13 |
9 12
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 16 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐹 |
| 17 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ⊆ 𝐴 |
| 18 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 |
| 19 |
17 18
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 20 |
16 19
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 21 |
15 20
|
nfim |
⊢ Ⅎ 𝑥 ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 22 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐹 ↔ 𝑦 ∈ 𝐹 ) ) |
| 23 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 24 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 25 |
23 24
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 26 |
22 25
|
bibi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ) ) |
| 28 |
21 27 1
|
chvarfv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 29 |
14 28
|
vtoclg |
⊢ ( 𝐵 ∈ V → ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) |
| 30 |
29
|
com12 |
⊢ ( 𝜑 → ( 𝐵 ∈ V → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) |
| 31 |
4 8 30
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) |