Metamath Proof Explorer


Theorem filfi

Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filfi FFilXfiF=F

Proof

Step Hyp Ref Expression
1 filin FFilXxFyFxyF
2 1 3expib FFilXxFyFxyF
3 2 ralrimivv FFilXxFyFxyF
4 inficl FFilXxFyFxyFfiF=F
5 3 4 mpbid FFilXfiF=F