Metamath Proof Explorer


Theorem filfi

Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filfi
|- ( F e. ( Fil ` X ) -> ( fi ` F ) = F )

Proof

Step Hyp Ref Expression
1 filin
 |-  ( ( F e. ( Fil ` X ) /\ x e. F /\ y e. F ) -> ( x i^i y ) e. F )
2 1 3expib
 |-  ( F e. ( Fil ` X ) -> ( ( x e. F /\ y e. F ) -> ( x i^i y ) e. F ) )
3 2 ralrimivv
 |-  ( F e. ( Fil ` X ) -> A. x e. F A. y e. F ( x i^i y ) e. F )
4 inficl
 |-  ( F e. ( Fil ` X ) -> ( A. x e. F A. y e. F ( x i^i y ) e. F <-> ( fi ` F ) = F ) )
5 3 4 mpbid
 |-  ( F e. ( Fil ` X ) -> ( fi ` F ) = F )