Step |
Hyp |
Ref |
Expression |
1 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑧 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ) ) |
2 |
|
elfvex |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ V ) |
3 |
|
fbasne0 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
4 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐹 ) |
5 |
3 4
|
sylib |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∃ 𝑦 𝑦 ∈ 𝐹 ) |
6 |
|
fbelss |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) |
7 |
6
|
ex |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → 𝑦 ⊆ 𝑋 ) ) |
8 |
7
|
ancld |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) ) |
9 |
8
|
eximdv |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ∃ 𝑦 𝑦 ∈ 𝐹 → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) ) |
10 |
5 9
|
mpd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) |
11 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) |
13 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) |
14 |
|
sseq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑋 ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑧 = 𝑋 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) ) |
16 |
15
|
sbcieg |
⊢ ( 𝑋 ∈ dom fBas → ( [ 𝑋 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) ) |
17 |
13 16
|
syl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( [ 𝑋 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) ) |
18 |
12 17
|
mpbird |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → [ 𝑋 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
19 |
|
0nelfb |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) |
20 |
|
0ex |
⊢ ∅ ∈ V |
21 |
|
sseq2 |
⊢ ( 𝑧 = ∅ → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ ∅ ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑧 = ∅ → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ∅ ) ) |
23 |
20 22
|
sbcie |
⊢ ( [ ∅ / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ∅ ) |
24 |
|
ss0 |
⊢ ( 𝑦 ⊆ ∅ → 𝑦 = ∅ ) |
25 |
24
|
eleq1d |
⊢ ( 𝑦 ⊆ ∅ → ( 𝑦 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
26 |
25
|
biimpac |
⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ ∅ ) → ∅ ∈ 𝐹 ) |
27 |
26
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹 ) |
28 |
23 27
|
sylbi |
⊢ ( [ ∅ / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 → ∅ ∈ 𝐹 ) |
29 |
19 28
|
nsyl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ [ ∅ / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
30 |
|
sstr |
⊢ ( ( 𝑦 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑢 ) → 𝑦 ⊆ 𝑢 ) |
31 |
30
|
expcom |
⊢ ( 𝑣 ⊆ 𝑢 → ( 𝑦 ⊆ 𝑣 → 𝑦 ⊆ 𝑢 ) ) |
32 |
31
|
reximdv |
⊢ ( 𝑣 ⊆ 𝑢 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑢 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
34 |
|
vex |
⊢ 𝑣 ∈ V |
35 |
|
sseq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑣 ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑧 = 𝑣 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 ) ) |
37 |
34 36
|
sbcie |
⊢ ( [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 ) |
38 |
|
vex |
⊢ 𝑢 ∈ V |
39 |
|
sseq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑢 ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑧 = 𝑢 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
41 |
38 40
|
sbcie |
⊢ ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) |
42 |
33 37 41
|
3imtr4g |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑢 ) → ( [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 → [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ) |
43 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
44 |
43
|
3expib |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) |
45 |
|
sstr2 |
⊢ ( 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) → 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
46 |
45
|
com12 |
⊢ ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
47 |
46
|
reximdv |
⊢ ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
48 |
|
ss2in |
⊢ ( ( 𝑧 ⊆ 𝑢 ∧ 𝑤 ⊆ 𝑣 ) → ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) |
49 |
47 48
|
syl11 |
⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → ( ( 𝑧 ⊆ 𝑢 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
50 |
44 49
|
syl6 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ( ( 𝑧 ⊆ 𝑢 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
51 |
50
|
exp5c |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑧 ∈ 𝐹 → ( 𝑤 ∈ 𝐹 → ( 𝑧 ⊆ 𝑢 → ( 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) ) ) |
52 |
51
|
imp31 |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑤 ∈ 𝐹 ) → ( 𝑧 ⊆ 𝑢 → ( 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
53 |
52
|
impancom |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑧 ⊆ 𝑢 ) → ( 𝑤 ∈ 𝐹 → ( 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
54 |
53
|
rexlimdv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑧 ⊆ 𝑢 ) → ( ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
55 |
54
|
rexlimdva2 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 → ( ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
56 |
55
|
impd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
57 |
56
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑋 ) → ( ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
58 |
|
sseq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ⊆ 𝑢 ↔ 𝑧 ⊆ 𝑢 ) ) |
59 |
58
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ) |
60 |
41 59
|
bitri |
⊢ ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ) |
61 |
|
sseq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ⊆ 𝑣 ↔ 𝑤 ⊆ 𝑣 ) ) |
62 |
61
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 ↔ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) |
63 |
37 62
|
bitri |
⊢ ( [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) |
64 |
60 63
|
anbi12i |
⊢ ( ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ∧ [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ↔ ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) ) |
65 |
38
|
inex1 |
⊢ ( 𝑢 ∩ 𝑣 ) ∈ V |
66 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝑢 ∩ 𝑣 ) → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
67 |
66
|
rexbidv |
⊢ ( 𝑧 = ( 𝑢 ∩ 𝑣 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
68 |
65 67
|
sbcie |
⊢ ( [ ( 𝑢 ∩ 𝑣 ) / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
69 |
57 64 68
|
3imtr4g |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑋 ) → ( ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ∧ [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) → [ ( 𝑢 ∩ 𝑣 ) / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ) |
70 |
1 2 18 29 42 69
|
isfild |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |