Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) |
2 |
|
isfbas2 |
⊢ ( 𝑋 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) |
6 |
5
|
simp3d |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) |
7 |
|
ineq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∩ 𝑧 ) = ( 𝐴 ∩ 𝑧 ) ) |
8 |
7
|
sseq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ) ) |
10 |
|
ineq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∩ 𝑧 ) = ( 𝐴 ∩ 𝐵 ) ) |
11 |
10
|
sseq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑧 = 𝐵 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
13 |
9 12
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
14 |
6 13
|
syl5com |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
15 |
14
|
3impib |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |