| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
fgcl |
|
| 3 |
|
filfbas |
|
| 4 |
1 2 3
|
3syl |
|
| 5 |
|
fbsspw |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
simplr |
|
| 8 |
7
|
sspwd |
|
| 9 |
6 8
|
sstrd |
|
| 10 |
|
simpr |
|
| 11 |
|
fbasweak |
|
| 12 |
4 9 10 11
|
syl3anc |
|
| 13 |
|
elfg |
|
| 14 |
12 13
|
syl |
|
| 15 |
1
|
adantr |
|
| 16 |
|
elfg |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
fbsspw |
|
| 19 |
1 18
|
syl |
|
| 20 |
19 8
|
sstrd |
|
| 21 |
|
fbasweak |
|
| 22 |
1 20 10 21
|
syl3anc |
|
| 23 |
|
fgcl |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
ssfg |
|
| 27 |
22 26
|
syl |
|
| 28 |
27
|
adantr |
|
| 29 |
28
|
sselda |
|
| 30 |
29
|
adantrr |
|
| 31 |
30
|
adantrr |
|
| 32 |
|
simplrl |
|
| 33 |
|
simprlr |
|
| 34 |
|
simprr |
|
| 35 |
33 34
|
sstrd |
|
| 36 |
|
filss |
|
| 37 |
25 31 32 35 36
|
syl13anc |
|
| 38 |
37
|
expr |
|
| 39 |
38
|
rexlimdvaa |
|
| 40 |
39
|
anassrs |
|
| 41 |
40
|
expimpd |
|
| 42 |
17 41
|
sylbid |
|
| 43 |
42
|
rexlimdv |
|
| 44 |
43
|
expimpd |
|
| 45 |
14 44
|
sylbid |
|
| 46 |
45
|
ssrdv |
|
| 47 |
|
ssfg |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
|
fgss |
|
| 50 |
22 12 48 49
|
syl3anc |
|
| 51 |
46 50
|
eqssd |
|
| 52 |
51
|
ex |
|
| 53 |
|
df-fg |
|
| 54 |
53
|
reldmmpo |
|
| 55 |
54
|
ovprc1 |
|
| 56 |
54
|
ovprc1 |
|
| 57 |
55 56
|
eqtr4d |
|
| 58 |
52 57
|
pm2.61d1 |
|