Metamath Proof Explorer


Theorem fgss

Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgss FfBasXGfBasXFGXfilGenFXfilGenG

Proof

Step Hyp Ref Expression
1 ssrexv FGxFxtxGxt
2 1 anim2d FGtXxFxttXxGxt
3 2 3ad2ant3 FfBasXGfBasXFGtXxFxttXxGxt
4 elfg FfBasXtXfilGenFtXxFxt
5 4 3ad2ant1 FfBasXGfBasXFGtXfilGenFtXxFxt
6 elfg GfBasXtXfilGenGtXxGxt
7 6 3ad2ant2 FfBasXGfBasXFGtXfilGenGtXxGxt
8 3 5 7 3imtr4d FfBasXGfBasXFGtXfilGenFtXfilGenG
9 8 ssrdv FfBasXGfBasXFGXfilGenFXfilGenG