Metamath Proof Explorer


Theorem fbasweak

Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fbasweak FfBasXF𝒫YYVFfBasY

Proof

Step Hyp Ref Expression
1 simp2 FfBasXF𝒫YYVF𝒫Y
2 simp1 FfBasXF𝒫YYVFfBasX
3 elfvdm FfBasXXdomfBas
4 3 3ad2ant1 FfBasXF𝒫YYVXdomfBas
5 isfbas XdomfBasFfBasXF𝒫XFFxFyFF𝒫xy
6 4 5 syl FfBasXF𝒫YYVFfBasXF𝒫XFFxFyFF𝒫xy
7 2 6 mpbid FfBasXF𝒫YYVF𝒫XFFxFyFF𝒫xy
8 7 simprd FfBasXF𝒫YYVFFxFyFF𝒫xy
9 isfbas YVFfBasYF𝒫YFFxFyFF𝒫xy
10 9 3ad2ant3 FfBasXF𝒫YYVFfBasYF𝒫YFFxFyFF𝒫xy
11 1 8 10 mpbir2and FfBasXF𝒫YYVFfBasY