| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
|
| 2 |
1
|
metustel |
|
| 3 |
|
simpr |
|
| 4 |
|
cnvimass |
|
| 5 |
|
psmetf |
|
| 6 |
5
|
fdmd |
|
| 7 |
6
|
adantr |
|
| 8 |
4 7
|
sseqtrid |
|
| 9 |
3 8
|
eqsstrd |
|
| 10 |
9
|
ex |
|
| 11 |
10
|
rexlimdvw |
|
| 12 |
2 11
|
sylbid |
|
| 13 |
12
|
ralrimiv |
|
| 14 |
|
pwssb |
|
| 15 |
13 14
|
sylibr |
|
| 16 |
15
|
adantl |
|
| 17 |
|
cnvexg |
|
| 18 |
|
imaexg |
|
| 19 |
|
elisset |
|
| 20 |
|
1rp |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
imaeq2d |
|
| 23 |
22
|
rspceeqv |
|
| 24 |
20 23
|
mpan |
|
| 25 |
24
|
eximi |
|
| 26 |
17 18 19 25
|
4syl |
|
| 27 |
2
|
exbidv |
|
| 28 |
26 27
|
mpbird |
|
| 29 |
28
|
adantl |
|
| 30 |
|
n0 |
|
| 31 |
29 30
|
sylibr |
|
| 32 |
1
|
metustid |
|
| 33 |
32
|
adantll |
|
| 34 |
|
n0 |
|
| 35 |
34
|
biimpi |
|
| 36 |
35
|
adantr |
|
| 37 |
|
opelidres |
|
| 38 |
37
|
ibir |
|
| 39 |
38
|
ne0d |
|
| 40 |
39
|
exlimiv |
|
| 41 |
36 40
|
syl |
|
| 42 |
41
|
adantr |
|
| 43 |
|
ssn0 |
|
| 44 |
33 42 43
|
syl2anc |
|
| 45 |
44
|
nelrdva |
|
| 46 |
|
df-nel |
|
| 47 |
45 46
|
sylibr |
|
| 48 |
|
dfss2 |
|
| 49 |
48
|
biimpi |
|
| 50 |
49
|
adantl |
|
| 51 |
|
simplrl |
|
| 52 |
50 51
|
eqeltrd |
|
| 53 |
|
sseqin2 |
|
| 54 |
53
|
biimpi |
|
| 55 |
54
|
adantl |
|
| 56 |
|
simplrr |
|
| 57 |
55 56
|
eqeltrd |
|
| 58 |
|
simplr |
|
| 59 |
|
simprl |
|
| 60 |
|
simprr |
|
| 61 |
1
|
metustto |
|
| 62 |
58 59 60 61
|
syl3anc |
|
| 63 |
52 57 62
|
mpjaodan |
|
| 64 |
|
ssidd |
|
| 65 |
|
sseq1 |
|
| 66 |
65
|
rspcev |
|
| 67 |
63 64 66
|
syl2anc |
|
| 68 |
67
|
ralrimivva |
|
| 69 |
31 47 68
|
3jca |
|
| 70 |
|
elfvex |
|
| 71 |
70
|
adantl |
|
| 72 |
71 71
|
xpexd |
|
| 73 |
|
isfbas2 |
|
| 74 |
72 73
|
syl |
|
| 75 |
16 69 74
|
mpbir2and |
|