Metamath Proof Explorer


Theorem ssn0

Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007)

Ref Expression
Assertion ssn0 ABAB

Proof

Step Hyp Ref Expression
1 sseq0 ABB=A=
2 1 ex ABB=A=
3 2 necon3d ABAB
4 3 imp ABAB