Metamath Proof Explorer


Theorem metustto

Description: Any two elements of the filter base generated by the metric D can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F=rana+D-10a
Assertion metustto DPsMetXAFBFABBA

Proof

Step Hyp Ref Expression
1 metust.1 F=rana+D-10a
2 simpll a+b+A=D-10aB=D-10ba+
3 2 rpred a+b+A=D-10aB=D-10ba
4 simplr a+b+A=D-10aB=D-10bb+
5 4 rpred a+b+A=D-10aB=D-10bb
6 simpllr a+b+A=D-10aB=D-10babb+
7 6 rpred a+b+A=D-10aB=D-10babb
8 0xr 0*
9 8 a1i bab0*
10 simpl babb
11 10 rexrd babb*
12 0le0 00
13 12 a1i bab00
14 simpr babab
15 icossico 0*b*00ab0a0b
16 9 11 13 14 15 syl22anc bab0a0b
17 imass2 0a0bD-10aD-10b
18 16 17 syl babD-10aD-10b
19 7 18 sylancom a+b+A=D-10aB=D-10babD-10aD-10b
20 simplrl a+b+A=D-10aB=D-10babA=D-10a
21 simplrr a+b+A=D-10aB=D-10babB=D-10b
22 19 20 21 3sstr4d a+b+A=D-10aB=D-10babAB
23 22 orcd a+b+A=D-10aB=D-10babABBA
24 simplll a+b+A=D-10aB=D-10bbaa+
25 24 rpred a+b+A=D-10aB=D-10bbaa
26 8 a1i aba0*
27 simpl abaa
28 27 rexrd abaa*
29 12 a1i aba00
30 simpr ababa
31 icossico 0*a*00ba0b0a
32 26 28 29 30 31 syl22anc aba0b0a
33 imass2 0b0aD-10bD-10a
34 32 33 syl abaD-10bD-10a
35 25 34 sylancom a+b+A=D-10aB=D-10bbaD-10bD-10a
36 simplrr a+b+A=D-10aB=D-10bbaB=D-10b
37 simplrl a+b+A=D-10aB=D-10bbaA=D-10a
38 35 36 37 3sstr4d a+b+A=D-10aB=D-10bbaBA
39 38 olcd a+b+A=D-10aB=D-10bbaABBA
40 3 5 23 39 lecasei a+b+A=D-10aB=D-10bABBA
41 40 adantlll DPsMetXAFBFa+b+A=D-10aB=D-10bABBA
42 1 metustel DPsMetXAFa+A=D-10a
43 42 biimpa DPsMetXAFa+A=D-10a
44 43 3adant3 DPsMetXAFBFa+A=D-10a
45 oveq2 a=b0a=0b
46 45 imaeq2d a=bD-10a=D-10b
47 46 cbvmptv a+D-10a=b+D-10b
48 47 rneqi rana+D-10a=ranb+D-10b
49 1 48 eqtri F=ranb+D-10b
50 49 metustel DPsMetXBFb+B=D-10b
51 50 biimpa DPsMetXBFb+B=D-10b
52 51 3adant2 DPsMetXAFBFb+B=D-10b
53 reeanv a+b+A=D-10aB=D-10ba+A=D-10ab+B=D-10b
54 44 52 53 sylanbrc DPsMetXAFBFa+b+A=D-10aB=D-10b
55 41 54 r19.29vva DPsMetXAFBFABBA