| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑎 ∈ ℝ+ ) |
| 3 |
2
|
rpred |
⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑎 ∈ ℝ ) |
| 4 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑏 ∈ ℝ+ ) |
| 5 |
4
|
rpred |
⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑏 ∈ ℝ ) |
| 6 |
|
simpllr |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ+ ) |
| 7 |
6
|
rpred |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ ) |
| 8 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 9 |
8
|
a1i |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 0 ∈ ℝ* ) |
| 10 |
|
simpl |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ ) |
| 11 |
10
|
rexrd |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ* ) |
| 12 |
|
0le0 |
⊢ 0 ≤ 0 |
| 13 |
12
|
a1i |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 0 ≤ 0 ) |
| 14 |
|
simpr |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 𝑎 ≤ 𝑏 ) |
| 15 |
|
icossico |
⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑎 ≤ 𝑏 ) ) → ( 0 [,) 𝑎 ) ⊆ ( 0 [,) 𝑏 ) ) |
| 16 |
9 11 13 14 15
|
syl22anc |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → ( 0 [,) 𝑎 ) ⊆ ( 0 [,) 𝑏 ) ) |
| 17 |
|
imass2 |
⊢ ( ( 0 [,) 𝑎 ) ⊆ ( 0 [,) 𝑏 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 19 |
7 18
|
sylancom |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 20 |
|
simplrl |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 21 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 22 |
19 20 21
|
3sstr4d |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝐴 ⊆ 𝐵 ) |
| 23 |
22
|
orcd |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 24 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ+ ) |
| 25 |
24
|
rpred |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ ) |
| 26 |
8
|
a1i |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 0 ∈ ℝ* ) |
| 27 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ ) |
| 28 |
27
|
rexrd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ* ) |
| 29 |
12
|
a1i |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 0 ≤ 0 ) |
| 30 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 𝑏 ≤ 𝑎 ) |
| 31 |
|
icossico |
⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑎 ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑏 ≤ 𝑎 ) ) → ( 0 [,) 𝑏 ) ⊆ ( 0 [,) 𝑎 ) ) |
| 32 |
26 28 29 30 31
|
syl22anc |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → ( 0 [,) 𝑏 ) ⊆ ( 0 [,) 𝑎 ) ) |
| 33 |
|
imass2 |
⊢ ( ( 0 [,) 𝑏 ) ⊆ ( 0 [,) 𝑎 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 35 |
25 34
|
sylancom |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 36 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 37 |
|
simplrl |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 38 |
35 36 37
|
3sstr4d |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝐵 ⊆ 𝐴 ) |
| 39 |
38
|
olcd |
⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 40 |
3 5 23 39
|
lecasei |
⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 41 |
40
|
adantlll |
⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 42 |
1
|
metustel |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 43 |
42
|
biimpa |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 44 |
43
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 45 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) |
| 46 |
45
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 47 |
46
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 48 |
47
|
rneqi |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 49 |
1 48
|
eqtri |
⊢ 𝐹 = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 50 |
49
|
metustel |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ 𝐹 ↔ ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 51 |
50
|
biimpa |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 52 |
51
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 53 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ( ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 54 |
44 52 53
|
sylanbrc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 55 |
41 54
|
r19.29vva |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |