Metamath Proof Explorer


Definition df-psmet

Description: Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion df-psmet PsMet=xVd*x×x|yxydy=0zxwxydzwdy+𝑒wdz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsmet classPsMet
1 vx setvarx
2 cvv classV
3 vd setvard
4 cxr class*
5 cmap class𝑚
6 1 cv setvarx
7 6 6 cxp classx×x
8 4 7 5 co class*x×x
9 vy setvary
10 9 cv setvary
11 3 cv setvard
12 10 10 11 co classydy
13 cc0 class0
14 12 13 wceq wffydy=0
15 vz setvarz
16 vw setvarw
17 15 cv setvarz
18 10 17 11 co classydz
19 cle class
20 16 cv setvarw
21 20 10 11 co classwdy
22 cxad class+𝑒
23 20 17 11 co classwdz
24 21 23 22 co classwdy+𝑒wdz
25 18 24 19 wbr wffydzwdy+𝑒wdz
26 25 16 6 wral wffwxydzwdy+𝑒wdz
27 26 15 6 wral wffzxwxydzwdy+𝑒wdz
28 14 27 wa wffydy=0zxwxydzwdy+𝑒wdz
29 28 9 6 wral wffyxydy=0zxwxydzwdy+𝑒wdz
30 29 3 8 crab classd*x×x|yxydy=0zxwxydzwdy+𝑒wdz
31 1 2 30 cmpt classxVd*x×x|yxydy=0zxwxydzwdy+𝑒wdz
32 0 31 wceq wffPsMet=xVd*x×x|yxydy=0zxwxydzwdy+𝑒wdz