Metamath Proof Explorer


Theorem icossico

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Assertion icossico A*B*ACDBCDAB

Proof

Step Hyp Ref Expression
1 df-ico .=x*,y*z*|xzz<y
2 xrletr A*C*w*ACCwAw
3 xrltletr w*D*B*w<DDBw<B
4 1 1 2 3 ixxss12 A*B*ACDBCDAB