Metamath Proof Explorer


Theorem metustsym

Description: Elements of the filter base generated by the metric D are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F = ran a + D -1 0 a
Assertion metustsym D PsMet X A F A -1 = A

Proof

Step Hyp Ref Expression
1 metust.1 F = ran a + D -1 0 a
2 1 metustss D PsMet X A F A X × X
3 cnvss A X × X A -1 X × X -1
4 cnvxp X × X -1 = X × X
5 3 4 sseqtrdi A X × X A -1 X × X
6 2 5 syl D PsMet X A F A -1 X × X
7 simp-4l D PsMet X A F p X q X a + A = D -1 0 a D PsMet X
8 simpr1r D PsMet X A F p X q X a + A = D -1 0 a q X
9 8 3anassrs D PsMet X A F p X q X a + A = D -1 0 a q X
10 simpr1l D PsMet X A F p X q X a + A = D -1 0 a p X
11 10 3anassrs D PsMet X A F p X q X a + A = D -1 0 a p X
12 psmetsym D PsMet X q X p X q D p = p D q
13 7 9 11 12 syl3anc D PsMet X A F p X q X a + A = D -1 0 a q D p = p D q
14 df-ov q D p = D q p
15 df-ov p D q = D p q
16 13 14 15 3eqtr3g D PsMet X A F p X q X a + A = D -1 0 a D q p = D p q
17 16 eleq1d D PsMet X A F p X q X a + A = D -1 0 a D q p 0 a D p q 0 a
18 psmetf D PsMet X D : X × X *
19 ffun D : X × X * Fun D
20 7 18 19 3syl D PsMet X A F p X q X a + A = D -1 0 a Fun D
21 simpllr D PsMet X A F p X q X a + A = D -1 0 a p X q X
22 21 ancomd D PsMet X A F p X q X a + A = D -1 0 a q X p X
23 opelxpi q X p X q p X × X
24 22 23 syl D PsMet X A F p X q X a + A = D -1 0 a q p X × X
25 fdm D : X × X * dom D = X × X
26 7 18 25 3syl D PsMet X A F p X q X a + A = D -1 0 a dom D = X × X
27 24 26 eleqtrrd D PsMet X A F p X q X a + A = D -1 0 a q p dom D
28 fvimacnv Fun D q p dom D D q p 0 a q p D -1 0 a
29 20 27 28 syl2anc D PsMet X A F p X q X a + A = D -1 0 a D q p 0 a q p D -1 0 a
30 opelxpi p X q X p q X × X
31 21 30 syl D PsMet X A F p X q X a + A = D -1 0 a p q X × X
32 31 26 eleqtrrd D PsMet X A F p X q X a + A = D -1 0 a p q dom D
33 fvimacnv Fun D p q dom D D p q 0 a p q D -1 0 a
34 20 32 33 syl2anc D PsMet X A F p X q X a + A = D -1 0 a D p q 0 a p q D -1 0 a
35 17 29 34 3bitr3d D PsMet X A F p X q X a + A = D -1 0 a q p D -1 0 a p q D -1 0 a
36 simpr D PsMet X A F p X q X a + A = D -1 0 a A = D -1 0 a
37 36 eleq2d D PsMet X A F p X q X a + A = D -1 0 a q p A q p D -1 0 a
38 36 eleq2d D PsMet X A F p X q X a + A = D -1 0 a p q A p q D -1 0 a
39 35 37 38 3bitr4d D PsMet X A F p X q X a + A = D -1 0 a q p A p q A
40 eqid a + D -1 0 a = a + D -1 0 a
41 40 elrnmpt A ran a + D -1 0 a A ran a + D -1 0 a a + A = D -1 0 a
42 41 ibi A ran a + D -1 0 a a + A = D -1 0 a
43 42 1 eleq2s A F a + A = D -1 0 a
44 43 ad2antlr D PsMet X A F p X q X a + A = D -1 0 a
45 39 44 r19.29a D PsMet X A F p X q X q p A p q A
46 df-br p A -1 q p q A -1
47 vex p V
48 vex q V
49 47 48 opelcnv p q A -1 q p A
50 46 49 bitri p A -1 q q p A
51 df-br p A q p q A
52 45 50 51 3bitr4g D PsMet X A F p X q X p A -1 q p A q
53 52 3impb D PsMet X A F p X q X p A -1 q p A q
54 6 2 53 eqbrrdva D PsMet X A F A -1 = A