| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
|
| 2 |
1
|
metustss |
|
| 3 |
|
cnvss |
|
| 4 |
|
cnvxp |
|
| 5 |
3 4
|
sseqtrdi |
|
| 6 |
2 5
|
syl |
|
| 7 |
|
simp-4l |
|
| 8 |
|
simpr1r |
|
| 9 |
8
|
3anassrs |
|
| 10 |
|
simpr1l |
|
| 11 |
10
|
3anassrs |
|
| 12 |
|
psmetsym |
|
| 13 |
7 9 11 12
|
syl3anc |
|
| 14 |
|
df-ov |
|
| 15 |
|
df-ov |
|
| 16 |
13 14 15
|
3eqtr3g |
|
| 17 |
16
|
eleq1d |
|
| 18 |
|
psmetf |
|
| 19 |
|
ffun |
|
| 20 |
7 18 19
|
3syl |
|
| 21 |
|
simpllr |
|
| 22 |
21
|
ancomd |
|
| 23 |
|
opelxpi |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
fdm |
|
| 26 |
7 18 25
|
3syl |
|
| 27 |
24 26
|
eleqtrrd |
|
| 28 |
|
fvimacnv |
|
| 29 |
20 27 28
|
syl2anc |
|
| 30 |
|
opelxpi |
|
| 31 |
21 30
|
syl |
|
| 32 |
31 26
|
eleqtrrd |
|
| 33 |
|
fvimacnv |
|
| 34 |
20 32 33
|
syl2anc |
|
| 35 |
17 29 34
|
3bitr3d |
|
| 36 |
|
simpr |
|
| 37 |
36
|
eleq2d |
|
| 38 |
36
|
eleq2d |
|
| 39 |
35 37 38
|
3bitr4d |
|
| 40 |
|
eqid |
|
| 41 |
40
|
elrnmpt |
|
| 42 |
41
|
ibi |
|
| 43 |
42 1
|
eleq2s |
|
| 44 |
43
|
ad2antlr |
|
| 45 |
39 44
|
r19.29a |
|
| 46 |
|
df-br |
|
| 47 |
|
vex |
|
| 48 |
|
vex |
|
| 49 |
47 48
|
opelcnv |
|
| 50 |
46 49
|
bitri |
|
| 51 |
|
df-br |
|
| 52 |
45 50 51
|
3bitr4g |
|
| 53 |
52
|
3impb |
|
| 54 |
6 2 53
|
eqbrrdva |
|