Metamath Proof Explorer


Theorem psmetsym

Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmetsym D PsMet X A X B X A D B = B D A

Proof

Step Hyp Ref Expression
1 psmetcl D PsMet X A X B X A D B *
2 psmetcl D PsMet X B X A X B D A *
3 2 3com23 D PsMet X A X B X B D A *
4 simp1 D PsMet X A X B X D PsMet X
5 simp3 D PsMet X A X B X B X
6 simp2 D PsMet X A X B X A X
7 psmettri2 D PsMet X B X A X B X A D B B D A + 𝑒 B D B
8 4 5 6 5 7 syl13anc D PsMet X A X B X A D B B D A + 𝑒 B D B
9 psmet0 D PsMet X B X B D B = 0
10 9 3adant2 D PsMet X A X B X B D B = 0
11 10 oveq2d D PsMet X A X B X B D A + 𝑒 B D B = B D A + 𝑒 0
12 2 xaddid1d D PsMet X B X A X B D A + 𝑒 0 = B D A
13 12 3com23 D PsMet X A X B X B D A + 𝑒 0 = B D A
14 11 13 eqtrd D PsMet X A X B X B D A + 𝑒 B D B = B D A
15 8 14 breqtrd D PsMet X A X B X A D B B D A
16 psmettri2 D PsMet X A X B X A X B D A A D B + 𝑒 A D A
17 4 6 5 6 16 syl13anc D PsMet X A X B X B D A A D B + 𝑒 A D A
18 psmet0 D PsMet X A X A D A = 0
19 18 3adant3 D PsMet X A X B X A D A = 0
20 19 oveq2d D PsMet X A X B X A D B + 𝑒 A D A = A D B + 𝑒 0
21 1 xaddid1d D PsMet X A X B X A D B + 𝑒 0 = A D B
22 20 21 eqtrd D PsMet X A X B X A D B + 𝑒 A D A = A D B
23 17 22 breqtrd D PsMet X A X B X B D A A D B
24 1 3 15 23 xrletrid D PsMet X A X B X A D B = B D A