Metamath Proof Explorer


Theorem psmettri2

Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion psmettri2 D PsMet X C X A X B X A D B C D A + 𝑒 C D B

Proof

Step Hyp Ref Expression
1 elfvex D PsMet X X V
2 ispsmet X V D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
3 1 2 syl D PsMet X D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
4 3 ibi D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
5 4 simprd D PsMet X a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
6 5 r19.21bi D PsMet X a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
7 6 simprd D PsMet X a X b X c X a D b c D a + 𝑒 c D b
8 7 ralrimiva D PsMet X a X b X c X a D b c D a + 𝑒 c D b
9 oveq1 a = A a D b = A D b
10 oveq2 a = A c D a = c D A
11 10 oveq1d a = A c D a + 𝑒 c D b = c D A + 𝑒 c D b
12 9 11 breq12d a = A a D b c D a + 𝑒 c D b A D b c D A + 𝑒 c D b
13 oveq2 b = B A D b = A D B
14 oveq2 b = B c D b = c D B
15 14 oveq2d b = B c D A + 𝑒 c D b = c D A + 𝑒 c D B
16 13 15 breq12d b = B A D b c D A + 𝑒 c D b A D B c D A + 𝑒 c D B
17 oveq1 c = C c D A = C D A
18 oveq1 c = C c D B = C D B
19 17 18 oveq12d c = C c D A + 𝑒 c D B = C D A + 𝑒 C D B
20 19 breq2d c = C A D B c D A + 𝑒 c D B A D B C D A + 𝑒 C D B
21 12 16 20 rspc3v A X B X C X a X b X c X a D b c D a + 𝑒 c D b A D B C D A + 𝑒 C D B
22 21 3comr C X A X B X a X b X c X a D b c D a + 𝑒 c D b A D B C D A + 𝑒 C D B
23 8 22 mpan9 D PsMet X C X A X B X A D B C D A + 𝑒 C D B