Metamath Proof Explorer


Theorem metustss

Description: Range of the elements of the filter base generated by the metric D . (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F=rana+D-10a
Assertion metustss DPsMetXAFAX×X

Proof

Step Hyp Ref Expression
1 metust.1 F=rana+D-10a
2 cnvimass D-10adomD
3 psmetf DPsMetXD:X×X*
4 2 3 fssdm DPsMetXD-10aX×X
5 4 ad2antrr DPsMetXAFa+D-10aX×X
6 cnvexg DPsMetXD-1V
7 imaexg D-1VD-10aV
8 elpwg D-10aVD-10a𝒫X×XD-10aX×X
9 6 7 8 3syl DPsMetXD-10a𝒫X×XD-10aX×X
10 9 ad2antrr DPsMetXAFa+D-10a𝒫X×XD-10aX×X
11 5 10 mpbird DPsMetXAFa+D-10a𝒫X×X
12 11 ralrimiva DPsMetXAFa+D-10a𝒫X×X
13 eqid a+D-10a=a+D-10a
14 13 rnmptss a+D-10a𝒫X×Xrana+D-10a𝒫X×X
15 12 14 syl DPsMetXAFrana+D-10a𝒫X×X
16 1 15 eqsstrid DPsMetXAFF𝒫X×X
17 simpr DPsMetXAFAF
18 16 17 sseldd DPsMetXAFA𝒫X×X
19 18 elpwid DPsMetXAFAX×X