| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
| 2 |
|
cnvimass |
|- ( `' D " ( 0 [,) a ) ) C_ dom D |
| 3 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
| 4 |
2 3
|
fssdm |
|- ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) |
| 6 |
|
cnvexg |
|- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
| 7 |
|
imaexg |
|- ( `' D e. _V -> ( `' D " ( 0 [,) a ) ) e. _V ) |
| 8 |
|
elpwg |
|- ( ( `' D " ( 0 [,) a ) ) e. _V -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) |
| 9 |
6 7 8
|
3syl |
|- ( D e. ( PsMet ` X ) -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) |
| 11 |
5 10
|
mpbird |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) ) |
| 12 |
11
|
ralrimiva |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A. a e. RR+ ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) ) |
| 13 |
|
eqid |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
| 14 |
13
|
rnmptss |
|- ( A. a e. RR+ ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) C_ ~P ( X X. X ) ) |
| 15 |
12 14
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) C_ ~P ( X X. X ) ) |
| 16 |
1 15
|
eqsstrid |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> F C_ ~P ( X X. X ) ) |
| 17 |
|
simpr |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A e. F ) |
| 18 |
16 17
|
sseldd |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A e. ~P ( X X. X ) ) |
| 19 |
18
|
elpwid |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) ) |