| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metucn.u |
|- U = ( metUnif ` C ) |
| 2 |
|
metucn.v |
|- V = ( metUnif ` D ) |
| 3 |
|
metucn.x |
|- ( ph -> X =/= (/) ) |
| 4 |
|
metucn.y |
|- ( ph -> Y =/= (/) ) |
| 5 |
|
metucn.c |
|- ( ph -> C e. ( PsMet ` X ) ) |
| 6 |
|
metucn.d |
|- ( ph -> D e. ( PsMet ` Y ) ) |
| 7 |
|
metuval |
|- ( C e. ( PsMet ` X ) -> ( metUnif ` C ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( metUnif ` C ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) ) |
| 9 |
1 8
|
eqtrid |
|- ( ph -> U = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) ) |
| 10 |
|
metuval |
|- ( D e. ( PsMet ` Y ) -> ( metUnif ` D ) = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) |
| 11 |
6 10
|
syl |
|- ( ph -> ( metUnif ` D ) = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) |
| 12 |
2 11
|
eqtrid |
|- ( ph -> V = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) |
| 13 |
9 12
|
oveq12d |
|- ( ph -> ( U uCn V ) = ( ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) uCn ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) ) |
| 14 |
13
|
eleq2d |
|- ( ph -> ( F e. ( U uCn V ) <-> F e. ( ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) uCn ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) ) ) |
| 15 |
|
eqid |
|- ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) |
| 16 |
|
eqid |
|- ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) |
| 17 |
|
oveq2 |
|- ( a = c -> ( 0 [,) a ) = ( 0 [,) c ) ) |
| 18 |
17
|
imaeq2d |
|- ( a = c -> ( `' C " ( 0 [,) a ) ) = ( `' C " ( 0 [,) c ) ) ) |
| 19 |
18
|
cbvmptv |
|- ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ( c e. RR+ |-> ( `' C " ( 0 [,) c ) ) ) |
| 20 |
19
|
rneqi |
|- ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ran ( c e. RR+ |-> ( `' C " ( 0 [,) c ) ) ) |
| 21 |
20
|
metust |
|- ( ( X =/= (/) /\ C e. ( PsMet ` X ) ) -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) e. ( UnifOn ` X ) ) |
| 22 |
3 5 21
|
syl2anc |
|- ( ph -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) e. ( UnifOn ` X ) ) |
| 23 |
|
oveq2 |
|- ( b = d -> ( 0 [,) b ) = ( 0 [,) d ) ) |
| 24 |
23
|
imaeq2d |
|- ( b = d -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) d ) ) ) |
| 25 |
24
|
cbvmptv |
|- ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ( d e. RR+ |-> ( `' D " ( 0 [,) d ) ) ) |
| 26 |
25
|
rneqi |
|- ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ran ( d e. RR+ |-> ( `' D " ( 0 [,) d ) ) ) |
| 27 |
26
|
metust |
|- ( ( Y =/= (/) /\ D e. ( PsMet ` Y ) ) -> ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) e. ( UnifOn ` Y ) ) |
| 28 |
4 6 27
|
syl2anc |
|- ( ph -> ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) e. ( UnifOn ` Y ) ) |
| 29 |
|
oveq2 |
|- ( a = e -> ( 0 [,) a ) = ( 0 [,) e ) ) |
| 30 |
29
|
imaeq2d |
|- ( a = e -> ( `' C " ( 0 [,) a ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 31 |
30
|
cbvmptv |
|- ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ( e e. RR+ |-> ( `' C " ( 0 [,) e ) ) ) |
| 32 |
31
|
rneqi |
|- ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ran ( e e. RR+ |-> ( `' C " ( 0 [,) e ) ) ) |
| 33 |
32
|
metustfbas |
|- ( ( X =/= (/) /\ C e. ( PsMet ` X ) ) -> ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) |
| 34 |
3 5 33
|
syl2anc |
|- ( ph -> ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) |
| 35 |
|
oveq2 |
|- ( b = f -> ( 0 [,) b ) = ( 0 [,) f ) ) |
| 36 |
35
|
imaeq2d |
|- ( b = f -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 37 |
36
|
cbvmptv |
|- ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ( f e. RR+ |-> ( `' D " ( 0 [,) f ) ) ) |
| 38 |
37
|
rneqi |
|- ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ran ( f e. RR+ |-> ( `' D " ( 0 [,) f ) ) ) |
| 39 |
38
|
metustfbas |
|- ( ( Y =/= (/) /\ D e. ( PsMet ` Y ) ) -> ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) e. ( fBas ` ( Y X. Y ) ) ) |
| 40 |
4 6 39
|
syl2anc |
|- ( ph -> ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) e. ( fBas ` ( Y X. Y ) ) ) |
| 41 |
15 16 22 28 34 40
|
isucn2 |
|- ( ph -> ( F e. ( ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) uCn ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) <-> ( F : X --> Y /\ A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) ) ) ) |
| 42 |
14 41
|
bitrd |
|- ( ph -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) ) ) ) |
| 43 |
|
eqid |
|- ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) d ) ) |
| 44 |
|
oveq2 |
|- ( f = d -> ( 0 [,) f ) = ( 0 [,) d ) ) |
| 45 |
44
|
imaeq2d |
|- ( f = d -> ( `' D " ( 0 [,) f ) ) = ( `' D " ( 0 [,) d ) ) ) |
| 46 |
45
|
rspceeqv |
|- ( ( d e. RR+ /\ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) d ) ) ) -> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 47 |
43 46
|
mpan2 |
|- ( d e. RR+ -> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ d e. RR+ ) -> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 49 |
38
|
metustel |
|- ( D e. ( PsMet ` Y ) -> ( ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) ) |
| 50 |
6 49
|
syl |
|- ( ph -> ( ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ d e. RR+ ) -> ( ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) ) |
| 52 |
48 51
|
mpbird |
|- ( ( ph /\ d e. RR+ ) -> ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) |
| 53 |
26
|
metustel |
|- ( D e. ( PsMet ` Y ) -> ( v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. d e. RR+ v = ( `' D " ( 0 [,) d ) ) ) ) |
| 54 |
6 53
|
syl |
|- ( ph -> ( v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. d e. RR+ v = ( `' D " ( 0 [,) d ) ) ) ) |
| 55 |
|
simpr |
|- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> v = ( `' D " ( 0 [,) d ) ) ) |
| 56 |
55
|
breqd |
|- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( ( F ` x ) v ( F ` y ) <-> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) |
| 57 |
56
|
imbi2d |
|- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( ( x u y -> ( F ` x ) v ( F ` y ) ) <-> ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 58 |
57
|
ralbidv |
|- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 59 |
58
|
rexralbidv |
|- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 60 |
52 54 59
|
ralxfr2d |
|- ( ph -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 61 |
|
eqid |
|- ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) c ) ) |
| 62 |
|
oveq2 |
|- ( e = c -> ( 0 [,) e ) = ( 0 [,) c ) ) |
| 63 |
62
|
imaeq2d |
|- ( e = c -> ( `' C " ( 0 [,) e ) ) = ( `' C " ( 0 [,) c ) ) ) |
| 64 |
63
|
rspceeqv |
|- ( ( c e. RR+ /\ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) c ) ) ) -> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 65 |
61 64
|
mpan2 |
|- ( c e. RR+ -> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ c e. RR+ ) -> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 67 |
32
|
metustel |
|- ( C e. ( PsMet ` X ) -> ( ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) ) |
| 68 |
5 67
|
syl |
|- ( ph -> ( ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ c e. RR+ ) -> ( ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) ) |
| 70 |
66 69
|
mpbird |
|- ( ( ph /\ c e. RR+ ) -> ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) |
| 71 |
20
|
metustel |
|- ( C e. ( PsMet ` X ) -> ( u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. c e. RR+ u = ( `' C " ( 0 [,) c ) ) ) ) |
| 72 |
5 71
|
syl |
|- ( ph -> ( u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. c e. RR+ u = ( `' C " ( 0 [,) c ) ) ) ) |
| 73 |
|
simpr |
|- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> u = ( `' C " ( 0 [,) c ) ) ) |
| 74 |
73
|
breqd |
|- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> ( x u y <-> x ( `' C " ( 0 [,) c ) ) y ) ) |
| 75 |
74
|
imbi1d |
|- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> ( ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 76 |
75
|
2ralbidv |
|- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> ( A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 77 |
70 72 76
|
rexxfr2d |
|- ( ph -> ( E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 78 |
77
|
ralbidv |
|- ( ph -> ( A. d e. RR+ E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 79 |
60 78
|
bitrd |
|- ( ph -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ F : X --> Y ) -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 81 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> C e. ( PsMet ` X ) ) |
| 82 |
|
simplr |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> c e. RR+ ) |
| 83 |
|
simprr |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
| 84 |
|
simprl |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
| 85 |
|
elbl4 |
|- ( ( ( C e. ( PsMet ` X ) /\ c e. RR+ ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` C ) c ) <-> x ( `' C " ( 0 [,) c ) ) y ) ) |
| 86 |
|
rpxr |
|- ( c e. RR+ -> c e. RR* ) |
| 87 |
|
elbl3ps |
|- ( ( ( C e. ( PsMet ` X ) /\ c e. RR* ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` C ) c ) <-> ( x C y ) < c ) ) |
| 88 |
86 87
|
sylanl2 |
|- ( ( ( C e. ( PsMet ` X ) /\ c e. RR+ ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` C ) c ) <-> ( x C y ) < c ) ) |
| 89 |
85 88
|
bitr3d |
|- ( ( ( C e. ( PsMet ` X ) /\ c e. RR+ ) /\ ( y e. X /\ x e. X ) ) -> ( x ( `' C " ( 0 [,) c ) ) y <-> ( x C y ) < c ) ) |
| 90 |
81 82 83 84 89
|
syl22anc |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( x ( `' C " ( 0 [,) c ) ) y <-> ( x C y ) < c ) ) |
| 91 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> D e. ( PsMet ` Y ) ) |
| 92 |
|
simpllr |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> d e. RR+ ) |
| 93 |
|
simp-4r |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> F : X --> Y ) |
| 94 |
93 83
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( F ` y ) e. Y ) |
| 95 |
93 84
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( F ` x ) e. Y ) |
| 96 |
|
elbl4 |
|- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR+ ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) e. ( ( F ` y ) ( ball ` D ) d ) <-> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) |
| 97 |
|
rpxr |
|- ( d e. RR+ -> d e. RR* ) |
| 98 |
|
elbl3ps |
|- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR* ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) e. ( ( F ` y ) ( ball ` D ) d ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 99 |
97 98
|
sylanl2 |
|- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR+ ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) e. ( ( F ` y ) ( ball ` D ) d ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 100 |
96 99
|
bitr3d |
|- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR+ ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 101 |
91 92 94 95 100
|
syl22anc |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 102 |
90 101
|
imbi12d |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 103 |
102
|
2ralbidva |
|- ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) -> ( A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 104 |
103
|
rexbidva |
|- ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) -> ( E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 105 |
104
|
ralbidva |
|- ( ( ph /\ F : X --> Y ) -> ( A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 106 |
80 105
|
bitrd |
|- ( ( ph /\ F : X --> Y ) -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 107 |
106
|
pm5.32da |
|- ( ph -> ( ( F : X --> Y /\ A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) ) <-> ( F : X --> Y /\ A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) ) |
| 108 |
42 107
|
bitrd |
|- ( ph -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) ) |