Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difdif2 | ⊢ ( 𝐴 ∖ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difindi | ⊢ ( 𝐴 ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ ( V ∖ 𝐶 ) ) ) | |
| 2 | invdif | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) | |
| 3 | 2 | eqcomi | ⊢ ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∩ ( V ∖ 𝐶 ) ) |
| 4 | 3 | difeq2i | ⊢ ( 𝐴 ∖ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐴 ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
| 5 | dfin2 | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐴 ∖ ( V ∖ 𝐶 ) ) | |
| 6 | 5 | uneq2i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ ( V ∖ 𝐶 ) ) ) |
| 7 | 1 4 6 | 3eqtr4i | ⊢ ( 𝐴 ∖ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |