| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnnrg |  |-  CCfld e. NrmRing | 
						
							| 2 |  | eqid |  |-  ( ZMod ` CCfld ) = ( ZMod ` CCfld ) | 
						
							| 3 | 2 | zhmnrg |  |-  ( CCfld e. NrmRing -> ( ZMod ` CCfld ) e. NrmRing ) | 
						
							| 4 |  | nrgngp |  |-  ( ( ZMod ` CCfld ) e. NrmRing -> ( ZMod ` CCfld ) e. NrmGrp ) | 
						
							| 5 | 1 3 4 | mp2b |  |-  ( ZMod ` CCfld ) e. NrmGrp | 
						
							| 6 |  | nrgring |  |-  ( CCfld e. NrmRing -> CCfld e. Ring ) | 
						
							| 7 |  | ringabl |  |-  ( CCfld e. Ring -> CCfld e. Abel ) | 
						
							| 8 | 1 6 7 | mp2b |  |-  CCfld e. Abel | 
						
							| 9 | 2 | zlmlmod |  |-  ( CCfld e. Abel <-> ( ZMod ` CCfld ) e. LMod ) | 
						
							| 10 | 8 9 | mpbi |  |-  ( ZMod ` CCfld ) e. LMod | 
						
							| 11 |  | zringnrg |  |-  ZZring e. NrmRing | 
						
							| 12 | 5 10 11 | 3pm3.2i |  |-  ( ( ZMod ` CCfld ) e. NrmGrp /\ ( ZMod ` CCfld ) e. LMod /\ ZZring e. NrmRing ) | 
						
							| 13 |  | simpl |  |-  ( ( z e. ZZ /\ x e. CC ) -> z e. ZZ ) | 
						
							| 14 | 13 | zcnd |  |-  ( ( z e. ZZ /\ x e. CC ) -> z e. CC ) | 
						
							| 15 |  | simpr |  |-  ( ( z e. ZZ /\ x e. CC ) -> x e. CC ) | 
						
							| 16 | 14 15 | absmuld |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( abs ` ( z x. x ) ) = ( ( abs ` z ) x. ( abs ` x ) ) ) | 
						
							| 17 |  | cnfldmulg |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( z ( .g ` CCfld ) x ) = ( z x. x ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( abs ` ( z ( .g ` CCfld ) x ) ) = ( abs ` ( z x. x ) ) ) | 
						
							| 19 |  | fvres |  |-  ( z e. ZZ -> ( ( abs |` ZZ ) ` z ) = ( abs ` z ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( ( abs |` ZZ ) ` z ) = ( abs ` z ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( ( ( abs |` ZZ ) ` z ) x. ( abs ` x ) ) = ( ( abs ` z ) x. ( abs ` x ) ) ) | 
						
							| 22 | 16 18 21 | 3eqtr4d |  |-  ( ( z e. ZZ /\ x e. CC ) -> ( abs ` ( z ( .g ` CCfld ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( abs ` x ) ) ) | 
						
							| 23 | 22 | rgen2 |  |-  A. z e. ZZ A. x e. CC ( abs ` ( z ( .g ` CCfld ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( abs ` x ) ) | 
						
							| 24 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 25 | 2 24 | zlmbas |  |-  CC = ( Base ` ( ZMod ` CCfld ) ) | 
						
							| 26 |  | cnfldex |  |-  CCfld e. _V | 
						
							| 27 |  | cnfldnm |  |-  abs = ( norm ` CCfld ) | 
						
							| 28 | 2 27 | zlmnm |  |-  ( CCfld e. _V -> abs = ( norm ` ( ZMod ` CCfld ) ) ) | 
						
							| 29 | 26 28 | ax-mp |  |-  abs = ( norm ` ( ZMod ` CCfld ) ) | 
						
							| 30 |  | eqid |  |-  ( .g ` CCfld ) = ( .g ` CCfld ) | 
						
							| 31 | 2 30 | zlmvsca |  |-  ( .g ` CCfld ) = ( .s ` ( ZMod ` CCfld ) ) | 
						
							| 32 | 2 | zlmsca |  |-  ( CCfld e. _V -> ZZring = ( Scalar ` ( ZMod ` CCfld ) ) ) | 
						
							| 33 | 26 32 | ax-mp |  |-  ZZring = ( Scalar ` ( ZMod ` CCfld ) ) | 
						
							| 34 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 35 |  | zringnm |  |-  ( norm ` ZZring ) = ( abs |` ZZ ) | 
						
							| 36 | 35 | eqcomi |  |-  ( abs |` ZZ ) = ( norm ` ZZring ) | 
						
							| 37 | 25 29 31 33 34 36 | isnlm |  |-  ( ( ZMod ` CCfld ) e. NrmMod <-> ( ( ( ZMod ` CCfld ) e. NrmGrp /\ ( ZMod ` CCfld ) e. LMod /\ ZZring e. NrmRing ) /\ A. z e. ZZ A. x e. CC ( abs ` ( z ( .g ` CCfld ) x ) ) = ( ( ( abs |` ZZ ) ` z ) x. ( abs ` x ) ) ) ) | 
						
							| 38 | 12 23 37 | mpbir2an |  |-  ( ZMod ` CCfld ) e. NrmMod |