Metamath Proof Explorer


Theorem zlm0

Description: Zero of a ZZ -module. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 W = ℤMod G
zlm0.1 0 ˙ = 0 G
Assertion zlm0 0 ˙ = 0 W

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W = ℤMod G
2 zlm0.1 0 ˙ = 0 G
3 eqid Base G = Base G
4 3 a1i Base G = Base G
5 1 3 zlmbas Base G = Base W
6 5 a1i Base G = Base W
7 eqid + G = + G
8 1 7 zlmplusg + G = + W
9 8 a1i x Base G y Base G + G = + W
10 9 oveqd x Base G y Base G x + G y = x + W y
11 4 6 10 grpidpropd 0 G = 0 W
12 11 mptru 0 G = 0 W
13 2 12 eqtri 0 ˙ = 0 W