Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
2 |
|
zlm0.1 |
|- .0. = ( 0g ` G ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
3
|
a1i |
|- ( T. -> ( Base ` G ) = ( Base ` G ) ) |
5 |
1 3
|
zlmbas |
|- ( Base ` G ) = ( Base ` W ) |
6 |
5
|
a1i |
|- ( T. -> ( Base ` G ) = ( Base ` W ) ) |
7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
8 |
1 7
|
zlmplusg |
|- ( +g ` G ) = ( +g ` W ) |
9 |
8
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( +g ` G ) = ( +g ` W ) ) |
10 |
9
|
oveqd |
|- ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` W ) y ) ) |
11 |
4 6 10
|
grpidpropd |
|- ( T. -> ( 0g ` G ) = ( 0g ` W ) ) |
12 |
11
|
mptru |
|- ( 0g ` G ) = ( 0g ` W ) |
13 |
2 12
|
eqtri |
|- .0. = ( 0g ` W ) |