Metamath Proof Explorer


Theorem zlm0

Description: Zero of a ZZ -module. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1
|- W = ( ZMod ` G )
zlm0.1
|- .0. = ( 0g ` G )
Assertion zlm0
|- .0. = ( 0g ` W )

Proof

Step Hyp Ref Expression
1 zlmlem2.1
 |-  W = ( ZMod ` G )
2 zlm0.1
 |-  .0. = ( 0g ` G )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 3 a1i
 |-  ( T. -> ( Base ` G ) = ( Base ` G ) )
5 1 3 zlmbas
 |-  ( Base ` G ) = ( Base ` W )
6 5 a1i
 |-  ( T. -> ( Base ` G ) = ( Base ` W ) )
7 eqid
 |-  ( +g ` G ) = ( +g ` G )
8 1 7 zlmplusg
 |-  ( +g ` G ) = ( +g ` W )
9 8 a1i
 |-  ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( +g ` G ) = ( +g ` W ) )
10 9 oveqd
 |-  ( ( T. /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` W ) y ) )
11 4 6 10 grpidpropd
 |-  ( T. -> ( 0g ` G ) = ( 0g ` W ) )
12 11 mptru
 |-  ( 0g ` G ) = ( 0g ` W )
13 2 12 eqtri
 |-  .0. = ( 0g ` W )