| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhnm.n |
|
| 2 |
|
qqhnm.z |
|
| 3 |
|
simpr |
|
| 4 |
|
qeqnumdivden |
|
| 5 |
4
|
fveq2d |
|
| 6 |
3 5
|
syl |
|
| 7 |
|
qnumcl |
|
| 8 |
3 7
|
syl |
|
| 9 |
8
|
zcnd |
|
| 10 |
|
qdencl |
|
| 11 |
3 10
|
syl |
|
| 12 |
11
|
nncnd |
|
| 13 |
|
nnne0 |
|
| 14 |
3 10 13
|
3syl |
|
| 15 |
9 12 14
|
absdivd |
|
| 16 |
|
inss2 |
|
| 17 |
|
simpl1 |
|
| 18 |
16 17
|
sselid |
|
| 19 |
|
simpl3 |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
20 21 22
|
qqhvval |
|
| 24 |
23
|
fveq2d |
|
| 25 |
18 19 3 24
|
syl21anc |
|
| 26 |
|
inss1 |
|
| 27 |
26 17
|
sselid |
|
| 28 |
|
drngnzr |
|
| 29 |
18 28
|
syl |
|
| 30 |
|
drngring |
|
| 31 |
22
|
zrhrhm |
|
| 32 |
|
zringbas |
|
| 33 |
32 20
|
rhmf |
|
| 34 |
18 30 31 33
|
4syl |
|
| 35 |
34 8
|
ffvelcdmd |
|
| 36 |
11
|
nnzd |
|
| 37 |
|
eqid |
|
| 38 |
20 22 37
|
elzrhunit |
|
| 39 |
18 19 36 14 38
|
syl22anc |
|
| 40 |
|
eqid |
|
| 41 |
20 1 40 21
|
nmdvr |
|
| 42 |
27 29 35 39 41
|
syl22anc |
|
| 43 |
|
simpl2 |
|
| 44 |
2
|
zhmnrg |
|
| 45 |
27 44
|
syl |
|
| 46 |
20 1 2 22
|
zrhnm |
|
| 47 |
43 45 29 8 46
|
syl31anc |
|
| 48 |
20 1 2 22
|
zrhnm |
|
| 49 |
43 45 29 36 48
|
syl31anc |
|
| 50 |
47 49
|
oveq12d |
|
| 51 |
25 42 50
|
3eqtrrd |
|
| 52 |
6 15 51
|
3eqtrrd |
|