Step |
Hyp |
Ref |
Expression |
1 |
|
qqhnm.n |
|
2 |
|
qqhnm.z |
|
3 |
|
simpr |
|
4 |
|
qeqnumdivden |
|
5 |
4
|
fveq2d |
|
6 |
3 5
|
syl |
|
7 |
|
qnumcl |
|
8 |
3 7
|
syl |
|
9 |
8
|
zcnd |
|
10 |
|
qdencl |
|
11 |
3 10
|
syl |
|
12 |
11
|
nncnd |
|
13 |
|
nnne0 |
|
14 |
3 10 13
|
3syl |
|
15 |
9 12 14
|
absdivd |
|
16 |
|
inss2 |
|
17 |
|
simpl1 |
|
18 |
16 17
|
sselid |
|
19 |
|
simpl3 |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
20 21 22
|
qqhvval |
|
24 |
23
|
fveq2d |
|
25 |
18 19 3 24
|
syl21anc |
|
26 |
|
inss1 |
|
27 |
26 17
|
sselid |
|
28 |
|
drngnzr |
|
29 |
18 28
|
syl |
|
30 |
|
drngring |
|
31 |
22
|
zrhrhm |
|
32 |
|
zringbas |
|
33 |
32 20
|
rhmf |
|
34 |
18 30 31 33
|
4syl |
|
35 |
34 8
|
ffvelrnd |
|
36 |
11
|
nnzd |
|
37 |
|
eqid |
|
38 |
20 22 37
|
elzrhunit |
|
39 |
18 19 36 14 38
|
syl22anc |
|
40 |
|
eqid |
|
41 |
20 1 40 21
|
nmdvr |
|
42 |
27 29 35 39 41
|
syl22anc |
|
43 |
|
simpl2 |
|
44 |
2
|
zhmnrg |
|
45 |
27 44
|
syl |
|
46 |
20 1 2 22
|
zrhnm |
|
47 |
43 45 29 8 46
|
syl31anc |
|
48 |
20 1 2 22
|
zrhnm |
|
49 |
43 45 29 36 48
|
syl31anc |
|
50 |
47 49
|
oveq12d |
|
51 |
25 42 50
|
3eqtrrd |
|
52 |
6 15 51
|
3eqtrrd |
|