Metamath Proof Explorer


Theorem qqhnm

Description: The norm of the image by QQHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses qqhnm.n N=normR
qqhnm.z Z=ℤModR
Assertion qqhnm RNrmRingDivRingZNrmModchrR=0QNℚHomRQ=Q

Proof

Step Hyp Ref Expression
1 qqhnm.n N=normR
2 qqhnm.z Z=ℤModR
3 simpr RNrmRingDivRingZNrmModchrR=0QQ
4 qeqnumdivden QQ=numerQdenomQ
5 4 fveq2d QQ=numerQdenomQ
6 3 5 syl RNrmRingDivRingZNrmModchrR=0QQ=numerQdenomQ
7 qnumcl QnumerQ
8 3 7 syl RNrmRingDivRingZNrmModchrR=0QnumerQ
9 8 zcnd RNrmRingDivRingZNrmModchrR=0QnumerQ
10 qdencl QdenomQ
11 3 10 syl RNrmRingDivRingZNrmModchrR=0QdenomQ
12 11 nncnd RNrmRingDivRingZNrmModchrR=0QdenomQ
13 nnne0 denomQdenomQ0
14 3 10 13 3syl RNrmRingDivRingZNrmModchrR=0QdenomQ0
15 9 12 14 absdivd RNrmRingDivRingZNrmModchrR=0QnumerQdenomQ=numerQdenomQ
16 inss2 NrmRingDivRingDivRing
17 simpl1 RNrmRingDivRingZNrmModchrR=0QRNrmRingDivRing
18 16 17 sselid RNrmRingDivRingZNrmModchrR=0QRDivRing
19 simpl3 RNrmRingDivRingZNrmModchrR=0QchrR=0
20 eqid BaseR=BaseR
21 eqid /rR=/rR
22 eqid ℤRHomR=ℤRHomR
23 20 21 22 qqhvval RDivRingchrR=0QℚHomRQ=ℤRHomRnumerQ/rRℤRHomRdenomQ
24 23 fveq2d RDivRingchrR=0QNℚHomRQ=NℤRHomRnumerQ/rRℤRHomRdenomQ
25 18 19 3 24 syl21anc RNrmRingDivRingZNrmModchrR=0QNℚHomRQ=NℤRHomRnumerQ/rRℤRHomRdenomQ
26 inss1 NrmRingDivRingNrmRing
27 26 17 sselid RNrmRingDivRingZNrmModchrR=0QRNrmRing
28 drngnzr RDivRingRNzRing
29 18 28 syl RNrmRingDivRingZNrmModchrR=0QRNzRing
30 drngring RDivRingRRing
31 22 zrhrhm RRingℤRHomRringRingHomR
32 zringbas =Basering
33 32 20 rhmf ℤRHomRringRingHomRℤRHomR:BaseR
34 18 30 31 33 4syl RNrmRingDivRingZNrmModchrR=0QℤRHomR:BaseR
35 34 8 ffvelcdmd RNrmRingDivRingZNrmModchrR=0QℤRHomRnumerQBaseR
36 11 nnzd RNrmRingDivRingZNrmModchrR=0QdenomQ
37 eqid 0R=0R
38 20 22 37 elzrhunit RDivRingchrR=0denomQdenomQ0ℤRHomRdenomQUnitR
39 18 19 36 14 38 syl22anc RNrmRingDivRingZNrmModchrR=0QℤRHomRdenomQUnitR
40 eqid UnitR=UnitR
41 20 1 40 21 nmdvr RNrmRingRNzRingℤRHomRnumerQBaseRℤRHomRdenomQUnitRNℤRHomRnumerQ/rRℤRHomRdenomQ=NℤRHomRnumerQNℤRHomRdenomQ
42 27 29 35 39 41 syl22anc RNrmRingDivRingZNrmModchrR=0QNℤRHomRnumerQ/rRℤRHomRdenomQ=NℤRHomRnumerQNℤRHomRdenomQ
43 simpl2 RNrmRingDivRingZNrmModchrR=0QZNrmMod
44 2 zhmnrg RNrmRingZNrmRing
45 27 44 syl RNrmRingDivRingZNrmModchrR=0QZNrmRing
46 20 1 2 22 zrhnm ZNrmModZNrmRingRNzRingnumerQNℤRHomRnumerQ=numerQ
47 43 45 29 8 46 syl31anc RNrmRingDivRingZNrmModchrR=0QNℤRHomRnumerQ=numerQ
48 20 1 2 22 zrhnm ZNrmModZNrmRingRNzRingdenomQNℤRHomRdenomQ=denomQ
49 43 45 29 36 48 syl31anc RNrmRingDivRingZNrmModchrR=0QNℤRHomRdenomQ=denomQ
50 47 49 oveq12d RNrmRingDivRingZNrmModchrR=0QNℤRHomRnumerQNℤRHomRdenomQ=numerQdenomQ
51 25 42 50 3eqtrrd RNrmRingDivRingZNrmModchrR=0QnumerQdenomQ=NℚHomRQ
52 6 15 51 3eqtrrd RNrmRingDivRingZNrmModchrR=0QNℚHomRQ=Q