Description: The norm of the image by QQHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qqhnm.n | |
|
qqhnm.z | |
||
Assertion | qqhnm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qqhnm.n | |
|
2 | qqhnm.z | |
|
3 | simpr | |
|
4 | qeqnumdivden | |
|
5 | 4 | fveq2d | |
6 | 3 5 | syl | |
7 | qnumcl | |
|
8 | 3 7 | syl | |
9 | 8 | zcnd | |
10 | qdencl | |
|
11 | 3 10 | syl | |
12 | 11 | nncnd | |
13 | nnne0 | |
|
14 | 3 10 13 | 3syl | |
15 | 9 12 14 | absdivd | |
16 | inss2 | |
|
17 | simpl1 | |
|
18 | 16 17 | sselid | |
19 | simpl3 | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 20 21 22 | qqhvval | |
24 | 23 | fveq2d | |
25 | 18 19 3 24 | syl21anc | |
26 | inss1 | |
|
27 | 26 17 | sselid | |
28 | drngnzr | |
|
29 | 18 28 | syl | |
30 | drngring | |
|
31 | 22 | zrhrhm | |
32 | zringbas | |
|
33 | 32 20 | rhmf | |
34 | 18 30 31 33 | 4syl | |
35 | 34 8 | ffvelcdmd | |
36 | 11 | nnzd | |
37 | eqid | |
|
38 | 20 22 37 | elzrhunit | |
39 | 18 19 36 14 38 | syl22anc | |
40 | eqid | |
|
41 | 20 1 40 21 | nmdvr | |
42 | 27 29 35 39 41 | syl22anc | |
43 | simpl2 | |
|
44 | 2 | zhmnrg | |
45 | 27 44 | syl | |
46 | 20 1 2 22 | zrhnm | |
47 | 43 45 29 8 46 | syl31anc | |
48 | 20 1 2 22 | zrhnm | |
49 | 43 45 29 36 48 | syl31anc | |
50 | 47 49 | oveq12d | |
51 | 25 42 50 | 3eqtrrd | |
52 | 6 15 51 | 3eqtrrd | |