Metamath Proof Explorer


Theorem qqhcn

Description: The QQHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017)

Ref Expression
Hypotheses qqhcn.q Q = fld 𝑠
qqhcn.j J = TopOpen Q
qqhcn.z Z = ℤMod R
qqhcn.k K = TopOpen R
Assertion qqhcn R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R J Cn K

Proof

Step Hyp Ref Expression
1 qqhcn.q Q = fld 𝑠
2 qqhcn.j J = TopOpen Q
3 qqhcn.z Z = ℤMod R
4 qqhcn.k K = TopOpen R
5 inss2 NrmRing DivRing DivRing
6 5 sseli R NrmRing DivRing R DivRing
7 6 3ad2ant1 R NrmRing DivRing Z NrmMod chr R = 0 R DivRing
8 simp3 R NrmRing DivRing Z NrmMod chr R = 0 chr R = 0
9 eqid Base R = Base R
10 eqid / r R = / r R
11 eqid ℤRHom R = ℤRHom R
12 9 10 11 qqhf R DivRing chr R = 0 ℚHom R : Base R
13 7 8 12 syl2anc R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R : Base R
14 simpr R NrmRing DivRing Z NrmMod chr R = 0 e + e +
15 qsscn
16 simpr R NrmRing DivRing Z NrmMod chr R = 0 e + q q
17 15 16 sselid R NrmRing DivRing Z NrmMod chr R = 0 e + q q
18 0cn 0
19 eqid abs = abs
20 19 cnmetdval 0 q 0 abs q = 0 q
21 18 20 mpan q 0 abs q = 0 q
22 df-neg q = 0 q
23 22 fveq2i q = 0 q
24 23 a1i q q = 0 q
25 absneg q q = q
26 21 24 25 3eqtr2d q 0 abs q = q
27 17 26 syl R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs q = q
28 zssq
29 0z 0
30 28 29 sselii 0
31 30 a1i R NrmRing DivRing Z NrmMod chr R = 0 e + q 0
32 31 16 ovresd R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs × q = 0 abs q
33 eqid norm R = norm R
34 33 3 qqhnm R NrmRing DivRing Z NrmMod chr R = 0 q norm R ℚHom R q = q
35 34 adantlr R NrmRing DivRing Z NrmMod chr R = 0 e + q norm R ℚHom R q = q
36 27 32 35 3eqtr4d R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs × q = norm R ℚHom R q
37 13 ad2antrr R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R : Base R
38 37 31 ffvelrnd R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R 0 Base R
39 37 16 ffvelrnd R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R q Base R
40 38 39 ovresd R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R 0 dist R Base R × Base R ℚHom R q = ℚHom R 0 dist R ℚHom R q
41 inss1 NrmRing DivRing NrmRing
42 41 sseli R NrmRing DivRing R NrmRing
43 42 3ad2ant1 R NrmRing DivRing Z NrmMod chr R = 0 R NrmRing
44 43 ad2antrr R NrmRing DivRing Z NrmMod chr R = 0 e + q R NrmRing
45 nrgngp R NrmRing R NrmGrp
46 44 45 syl R NrmRing DivRing Z NrmMod chr R = 0 e + q R NrmGrp
47 eqid - R = - R
48 eqid dist R = dist R
49 33 9 47 48 ngpdsr R NrmGrp ℚHom R 0 Base R ℚHom R q Base R ℚHom R 0 dist R ℚHom R q = norm R ℚHom R q - R ℚHom R 0
50 46 38 39 49 syl3anc R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R 0 dist R ℚHom R q = norm R ℚHom R q - R ℚHom R 0
51 7 ad2antrr R NrmRing DivRing Z NrmMod chr R = 0 e + q R DivRing
52 8 ad2antrr R NrmRing DivRing Z NrmMod chr R = 0 e + q chr R = 0
53 9 10 11 qqh0 R DivRing chr R = 0 ℚHom R 0 = 0 R
54 51 52 53 syl2anc R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R 0 = 0 R
55 54 oveq2d R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R q - R ℚHom R 0 = ℚHom R q - R 0 R
56 ngpgrp R NrmGrp R Grp
57 46 56 syl R NrmRing DivRing Z NrmMod chr R = 0 e + q R Grp
58 eqid 0 R = 0 R
59 9 58 47 grpsubid1 R Grp ℚHom R q Base R ℚHom R q - R 0 R = ℚHom R q
60 57 39 59 syl2anc R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R q - R 0 R = ℚHom R q
61 55 60 eqtrd R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R q - R ℚHom R 0 = ℚHom R q
62 61 fveq2d R NrmRing DivRing Z NrmMod chr R = 0 e + q norm R ℚHom R q - R ℚHom R 0 = norm R ℚHom R q
63 40 50 62 3eqtrd R NrmRing DivRing Z NrmMod chr R = 0 e + q ℚHom R 0 dist R Base R × Base R ℚHom R q = norm R ℚHom R q
64 36 63 eqtr4d R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs × q = ℚHom R 0 dist R Base R × Base R ℚHom R q
65 64 breq1d R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs × q < e ℚHom R 0 dist R Base R × Base R ℚHom R q < e
66 65 biimpd R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs × q < e ℚHom R 0 dist R Base R × Base R ℚHom R q < e
67 66 ralrimiva R NrmRing DivRing Z NrmMod chr R = 0 e + q 0 abs × q < e ℚHom R 0 dist R Base R × Base R ℚHom R q < e
68 breq2 d = e 0 abs × q < d 0 abs × q < e
69 68 rspceaimv e + q 0 abs × q < e ℚHom R 0 dist R Base R × Base R ℚHom R q < e d + q 0 abs × q < d ℚHom R 0 dist R Base R × Base R ℚHom R q < e
70 14 67 69 syl2anc R NrmRing DivRing Z NrmMod chr R = 0 e + d + q 0 abs × q < d ℚHom R 0 dist R Base R × Base R ℚHom R q < e
71 70 ralrimiva R NrmRing DivRing Z NrmMod chr R = 0 e + d + q 0 abs × q < d ℚHom R 0 dist R Base R × Base R ℚHom R q < e
72 cnfldxms fld ∞MetSp
73 qex V
74 ressxms fld ∞MetSp V fld 𝑠 ∞MetSp
75 72 73 74 mp2an fld 𝑠 ∞MetSp
76 1 75 eqeltri Q ∞MetSp
77 1 qrngbas = Base Q
78 cnfldds abs = dist fld
79 1 78 ressds V abs = dist Q
80 73 79 ax-mp abs = dist Q
81 77 80 xmsxmet2 Q ∞MetSp abs × ∞Met
82 76 81 mp1i R NrmRing DivRing Z NrmMod chr R = 0 abs × ∞Met
83 ngpxms R NrmGrp R ∞MetSp
84 42 45 83 3syl R NrmRing DivRing R ∞MetSp
85 84 3ad2ant1 R NrmRing DivRing Z NrmMod chr R = 0 R ∞MetSp
86 9 48 xmsxmet2 R ∞MetSp dist R Base R × Base R ∞Met Base R
87 85 86 syl R NrmRing DivRing Z NrmMod chr R = 0 dist R Base R × Base R ∞Met Base R
88 30 a1i R NrmRing DivRing Z NrmMod chr R = 0 0
89 80 reseq1i abs × = dist Q ×
90 2 77 89 xmstopn Q ∞MetSp J = MetOpen abs ×
91 76 90 ax-mp J = MetOpen abs ×
92 eqid MetOpen dist R Base R × Base R = MetOpen dist R Base R × Base R
93 91 92 metcnp abs × ∞Met dist R Base R × Base R ∞Met Base R 0 ℚHom R J CnP MetOpen dist R Base R × Base R 0 ℚHom R : Base R e + d + q 0 abs × q < d ℚHom R 0 dist R Base R × Base R ℚHom R q < e
94 82 87 88 93 syl3anc R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R J CnP MetOpen dist R Base R × Base R 0 ℚHom R : Base R e + d + q 0 abs × q < d ℚHom R 0 dist R Base R × Base R ℚHom R q < e
95 13 71 94 mpbir2and R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R J CnP MetOpen dist R Base R × Base R 0
96 eqid dist R Base R × Base R = dist R Base R × Base R
97 4 9 96 xmstopn R ∞MetSp K = MetOpen dist R Base R × Base R
98 85 97 syl R NrmRing DivRing Z NrmMod chr R = 0 K = MetOpen dist R Base R × Base R
99 98 oveq2d R NrmRing DivRing Z NrmMod chr R = 0 J CnP K = J CnP MetOpen dist R Base R × Base R
100 99 fveq1d R NrmRing DivRing Z NrmMod chr R = 0 J CnP K 0 = J CnP MetOpen dist R Base R × Base R 0
101 95 100 eleqtrrd R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R J CnP K 0
102 cnfldtgp fld TopGrp
103 qsubdrg SubRing fld fld 𝑠 DivRing
104 103 simpli SubRing fld
105 subrgsubg SubRing fld SubGrp fld
106 104 105 ax-mp SubGrp fld
107 1 subgtgp fld TopGrp SubGrp fld Q TopGrp
108 102 106 107 mp2an Q TopGrp
109 tgptmd Q TopGrp Q TopMnd
110 108 109 mp1i R NrmRing DivRing Z NrmMod chr R = 0 Q TopMnd
111 nrgtrg R NrmRing R TopRing
112 trgtmd2 R TopRing R TopMnd
113 43 111 112 3syl R NrmRing DivRing Z NrmMod chr R = 0 R TopMnd
114 9 10 11 1 qqhghm R DivRing chr R = 0 ℚHom R Q GrpHom R
115 7 8 114 syl2anc R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R Q GrpHom R
116 77 2 4 ghmcnp Q TopMnd R TopMnd ℚHom R Q GrpHom R ℚHom R J CnP K 0 0 ℚHom R J Cn K
117 110 113 115 116 syl3anc R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R J CnP K 0 0 ℚHom R J Cn K
118 101 117 mpbid R NrmRing DivRing Z NrmMod chr R = 0 0 ℚHom R J Cn K
119 118 simprd R NrmRing DivRing Z NrmMod chr R = 0 ℚHom R J Cn K