Metamath Proof Explorer


Theorem subgtgp

Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgtgp.h H=G𝑠S
Assertion subgtgp GTopGrpSSubGrpGHTopGrp

Proof

Step Hyp Ref Expression
1 subgtgp.h H=G𝑠S
2 1 subggrp SSubGrpGHGrp
3 2 adantl GTopGrpSSubGrpGHGrp
4 tgptmd GTopGrpGTopMnd
5 subgsubm SSubGrpGSSubMndG
6 1 submtmd GTopMndSSubMndGHTopMnd
7 4 5 6 syl2an GTopGrpSSubGrpGHTopMnd
8 1 subgbas SSubGrpGS=BaseH
9 8 adantl GTopGrpSSubGrpGS=BaseH
10 9 mpteq1d GTopGrpSSubGrpGxSinvgHx=xBaseHinvgHx
11 eqid invgG=invgG
12 eqid invgH=invgH
13 1 11 12 subginv SSubGrpGxSinvgGx=invgHx
14 13 adantll GTopGrpSSubGrpGxSinvgGx=invgHx
15 14 mpteq2dva GTopGrpSSubGrpGxSinvgGx=xSinvgHx
16 eqid BaseH=BaseH
17 16 12 grpinvf HGrpinvgH:BaseHBaseH
18 3 17 syl GTopGrpSSubGrpGinvgH:BaseHBaseH
19 18 feqmptd GTopGrpSSubGrpGinvgH=xBaseHinvgHx
20 10 15 19 3eqtr4rd GTopGrpSSubGrpGinvgH=xSinvgGx
21 eqid TopOpenG𝑡S=TopOpenG𝑡S
22 eqid TopOpenG=TopOpenG
23 eqid BaseG=BaseG
24 22 23 tgptopon GTopGrpTopOpenGTopOnBaseG
25 24 adantr GTopGrpSSubGrpGTopOpenGTopOnBaseG
26 23 subgss SSubGrpGSBaseG
27 26 adantl GTopGrpSSubGrpGSBaseG
28 tgpgrp GTopGrpGGrp
29 28 adantr GTopGrpSSubGrpGGGrp
30 23 11 grpinvf GGrpinvgG:BaseGBaseG
31 29 30 syl GTopGrpSSubGrpGinvgG:BaseGBaseG
32 31 feqmptd GTopGrpSSubGrpGinvgG=xBaseGinvgGx
33 22 11 tgpinv GTopGrpinvgGTopOpenGCnTopOpenG
34 33 adantr GTopGrpSSubGrpGinvgGTopOpenGCnTopOpenG
35 32 34 eqeltrrd GTopGrpSSubGrpGxBaseGinvgGxTopOpenGCnTopOpenG
36 21 25 27 35 cnmpt1res GTopGrpSSubGrpGxSinvgGxTopOpenG𝑡SCnTopOpenG
37 20 36 eqeltrd GTopGrpSSubGrpGinvgHTopOpenG𝑡SCnTopOpenG
38 18 frnd GTopGrpSSubGrpGraninvgHBaseH
39 38 9 sseqtrrd GTopGrpSSubGrpGraninvgHS
40 cnrest2 TopOpenGTopOnBaseGraninvgHSSBaseGinvgHTopOpenG𝑡SCnTopOpenGinvgHTopOpenG𝑡SCnTopOpenG𝑡S
41 25 39 27 40 syl3anc GTopGrpSSubGrpGinvgHTopOpenG𝑡SCnTopOpenGinvgHTopOpenG𝑡SCnTopOpenG𝑡S
42 37 41 mpbid GTopGrpSSubGrpGinvgHTopOpenG𝑡SCnTopOpenG𝑡S
43 1 22 resstopn TopOpenG𝑡S=TopOpenH
44 43 12 istgp HTopGrpHGrpHTopMndinvgHTopOpenG𝑡SCnTopOpenG𝑡S
45 3 7 42 44 syl3anbrc GTopGrpSSubGrpGHTopGrp