Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgtgp.h | |
|
Assertion | subgtgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgtgp.h | |
|
2 | 1 | subggrp | |
3 | 2 | adantl | |
4 | tgptmd | |
|
5 | subgsubm | |
|
6 | 1 | submtmd | |
7 | 4 5 6 | syl2an | |
8 | 1 | subgbas | |
9 | 8 | adantl | |
10 | 9 | mpteq1d | |
11 | eqid | |
|
12 | eqid | |
|
13 | 1 11 12 | subginv | |
14 | 13 | adantll | |
15 | 14 | mpteq2dva | |
16 | eqid | |
|
17 | 16 12 | grpinvf | |
18 | 3 17 | syl | |
19 | 18 | feqmptd | |
20 | 10 15 19 | 3eqtr4rd | |
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | 22 23 | tgptopon | |
25 | 24 | adantr | |
26 | 23 | subgss | |
27 | 26 | adantl | |
28 | tgpgrp | |
|
29 | 28 | adantr | |
30 | 23 11 | grpinvf | |
31 | 29 30 | syl | |
32 | 31 | feqmptd | |
33 | 22 11 | tgpinv | |
34 | 33 | adantr | |
35 | 32 34 | eqeltrrd | |
36 | 21 25 27 35 | cnmpt1res | |
37 | 20 36 | eqeltrd | |
38 | 18 | frnd | |
39 | 38 9 | sseqtrrd | |
40 | cnrest2 | |
|
41 | 25 39 27 40 | syl3anc | |
42 | 37 41 | mpbid | |
43 | 1 22 | resstopn | |
44 | 43 12 | istgp | |
45 | 3 7 42 44 | syl3anbrc | |