Metamath Proof Explorer


Theorem tgpgrp

Description: A topological group is a group. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion tgpgrp GTopGrpGGrp

Proof

Step Hyp Ref Expression
1 eqid TopOpenG=TopOpenG
2 eqid invgG=invgG
3 1 2 istgp GTopGrpGGrpGTopMndinvgGTopOpenGCnTopOpenG
4 3 simp1bi GTopGrpGGrp