Metamath Proof Explorer


Theorem istgp

Description: The predicate "is a topological group". Definition 1 of BourbakiTop1 p. III.1. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses istgp.1 J = TopOpen G
istgp.2 I = inv g G
Assertion istgp G TopGrp G Grp G TopMnd I J Cn J

Proof

Step Hyp Ref Expression
1 istgp.1 J = TopOpen G
2 istgp.2 I = inv g G
3 elin G Grp TopMnd G Grp G TopMnd
4 3 anbi1i G Grp TopMnd I J Cn J G Grp G TopMnd I J Cn J
5 fvexd f = G TopOpen f V
6 simpl f = G j = TopOpen f f = G
7 6 fveq2d f = G j = TopOpen f inv g f = inv g G
8 7 2 eqtr4di f = G j = TopOpen f inv g f = I
9 id j = TopOpen f j = TopOpen f
10 fveq2 f = G TopOpen f = TopOpen G
11 10 1 eqtr4di f = G TopOpen f = J
12 9 11 sylan9eqr f = G j = TopOpen f j = J
13 12 12 oveq12d f = G j = TopOpen f j Cn j = J Cn J
14 8 13 eleq12d f = G j = TopOpen f inv g f j Cn j I J Cn J
15 5 14 sbcied f = G [˙ TopOpen f / j]˙ inv g f j Cn j I J Cn J
16 df-tgp TopGrp = f Grp TopMnd | [˙ TopOpen f / j]˙ inv g f j Cn j
17 15 16 elrab2 G TopGrp G Grp TopMnd I J Cn J
18 df-3an G Grp G TopMnd I J Cn J G Grp G TopMnd I J Cn J
19 4 17 18 3bitr4i G TopGrp G Grp G TopMnd I J Cn J