Metamath Proof Explorer


Theorem subgtgp

Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgtgp.h
|- H = ( G |`s S )
Assertion subgtgp
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopGrp )

Proof

Step Hyp Ref Expression
1 subgtgp.h
 |-  H = ( G |`s S )
2 1 subggrp
 |-  ( S e. ( SubGrp ` G ) -> H e. Grp )
3 2 adantl
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. Grp )
4 tgptmd
 |-  ( G e. TopGrp -> G e. TopMnd )
5 subgsubm
 |-  ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) )
6 1 submtmd
 |-  ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. TopMnd )
7 4 5 6 syl2an
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopMnd )
8 1 subgbas
 |-  ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) )
9 8 adantl
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` H ) )
10 9 mpteq1d
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` H ) ` x ) ) = ( x e. ( Base ` H ) |-> ( ( invg ` H ) ` x ) ) )
11 eqid
 |-  ( invg ` G ) = ( invg ` G )
12 eqid
 |-  ( invg ` H ) = ( invg ` H )
13 1 11 12 subginv
 |-  ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( invg ` G ) ` x ) = ( ( invg ` H ) ` x ) )
14 13 adantll
 |-  ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( invg ` G ) ` x ) = ( ( invg ` H ) ` x ) )
15 14 mpteq2dva
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` G ) ` x ) ) = ( x e. S |-> ( ( invg ` H ) ` x ) ) )
16 eqid
 |-  ( Base ` H ) = ( Base ` H )
17 16 12 grpinvf
 |-  ( H e. Grp -> ( invg ` H ) : ( Base ` H ) --> ( Base ` H ) )
18 3 17 syl
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) : ( Base ` H ) --> ( Base ` H ) )
19 18 feqmptd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) = ( x e. ( Base ` H ) |-> ( ( invg ` H ) ` x ) ) )
20 10 15 19 3eqtr4rd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) = ( x e. S |-> ( ( invg ` G ) ` x ) ) )
21 eqid
 |-  ( ( TopOpen ` G ) |`t S ) = ( ( TopOpen ` G ) |`t S )
22 eqid
 |-  ( TopOpen ` G ) = ( TopOpen ` G )
23 eqid
 |-  ( Base ` G ) = ( Base ` G )
24 22 23 tgptopon
 |-  ( G e. TopGrp -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) )
25 24 adantr
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) )
26 23 subgss
 |-  ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) )
27 26 adantl
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S C_ ( Base ` G ) )
28 tgpgrp
 |-  ( G e. TopGrp -> G e. Grp )
29 28 adantr
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> G e. Grp )
30 23 11 grpinvf
 |-  ( G e. Grp -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) )
31 29 30 syl
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) )
32 31 feqmptd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) = ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) )
33 22 11 tgpinv
 |-  ( G e. TopGrp -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) )
34 33 adantr
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) )
35 32 34 eqeltrrd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) )
36 21 25 27 35 cnmpt1res
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` G ) ` x ) ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) )
37 20 36 eqeltrd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) )
38 18 frnd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ran ( invg ` H ) C_ ( Base ` H ) )
39 38 9 sseqtrrd
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ran ( invg ` H ) C_ S )
40 cnrest2
 |-  ( ( ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) /\ ran ( invg ` H ) C_ S /\ S C_ ( Base ` G ) ) -> ( ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) <-> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) )
41 25 39 27 40 syl3anc
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) <-> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) )
42 37 41 mpbid
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) )
43 1 22 resstopn
 |-  ( ( TopOpen ` G ) |`t S ) = ( TopOpen ` H )
44 43 12 istgp
 |-  ( H e. TopGrp <-> ( H e. Grp /\ H e. TopMnd /\ ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) )
45 3 7 42 44 syl3anbrc
 |-  ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopGrp )