| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgtgp.g |
|
| 2 |
1
|
symggrp |
|
| 3 |
|
eqid |
|
| 4 |
3
|
efmndtmd |
|
| 5 |
|
eqid |
|
| 6 |
3 1 5
|
symgsubmefmnd |
|
| 7 |
1 5 3
|
symgressbas |
|
| 8 |
7
|
submtmd |
|
| 9 |
4 6 8
|
syl2anc |
|
| 10 |
|
eqid |
|
| 11 |
1 5
|
symgtopn |
|
| 12 |
|
distopon |
|
| 13 |
10
|
pttoponconst |
|
| 14 |
12 13
|
mpdan |
|
| 15 |
1 5
|
elsymgbas |
|
| 16 |
|
f1of |
|
| 17 |
|
elmapg |
|
| 18 |
17
|
anidms |
|
| 19 |
16 18
|
imbitrrid |
|
| 20 |
15 19
|
sylbid |
|
| 21 |
20
|
ssrdv |
|
| 22 |
|
resttopon |
|
| 23 |
14 21 22
|
syl2anc |
|
| 24 |
11 23
|
eqeltrrd |
|
| 25 |
|
id |
|
| 26 |
|
distop |
|
| 27 |
|
fconst6g |
|
| 28 |
26 27
|
syl |
|
| 29 |
15
|
biimpa |
|
| 30 |
|
f1ocnv |
|
| 31 |
|
f1of |
|
| 32 |
29 30 31
|
3syl |
|
| 33 |
32
|
ffvelcdmda |
|
| 34 |
33
|
an32s |
|
| 35 |
34
|
fmpttd |
|
| 36 |
35
|
adantr |
|
| 37 |
|
cnveq |
|
| 38 |
37
|
fveq1d |
|
| 39 |
|
eqid |
|
| 40 |
|
fvex |
|
| 41 |
38 39 40
|
fvmpt |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
42
|
eleq1d |
|
| 44 |
|
eqid |
|
| 45 |
44
|
mptiniseg |
|
| 46 |
45
|
elv |
|
| 47 |
|
eqid |
|
| 48 |
14
|
ad2antrr |
|
| 49 |
21
|
ad2antrr |
|
| 50 |
|
toponuni |
|
| 51 |
|
mpteq1 |
|
| 52 |
48 50 51
|
3syl |
|
| 53 |
|
simpll |
|
| 54 |
28
|
ad2antrr |
|
| 55 |
1 5
|
elsymgbas |
|
| 56 |
55
|
adantr |
|
| 57 |
56
|
biimpa |
|
| 58 |
|
f1ocnv |
|
| 59 |
|
f1of |
|
| 60 |
57 58 59
|
3syl |
|
| 61 |
|
simplr |
|
| 62 |
60 61
|
ffvelcdmd |
|
| 63 |
|
eqid |
|
| 64 |
63 10
|
ptpjcn |
|
| 65 |
53 54 62 64
|
syl3anc |
|
| 66 |
26
|
ad2antrr |
|
| 67 |
|
fvconst2g |
|
| 68 |
66 62 67
|
syl2anc |
|
| 69 |
68
|
oveq2d |
|
| 70 |
65 69
|
eleqtrd |
|
| 71 |
52 70
|
eqeltrd |
|
| 72 |
47 48 49 71
|
cnmpt1res |
|
| 73 |
11
|
oveq1d |
|
| 74 |
73
|
ad2antrr |
|
| 75 |
72 74
|
eleqtrd |
|
| 76 |
|
snelpwi |
|
| 77 |
76
|
ad2antlr |
|
| 78 |
|
cnima |
|
| 79 |
75 77 78
|
syl2anc |
|
| 80 |
46 79
|
eqeltrrid |
|
| 81 |
80
|
adantr |
|
| 82 |
|
fveq1 |
|
| 83 |
82
|
eqeq1d |
|
| 84 |
|
simplr |
|
| 85 |
57
|
adantr |
|
| 86 |
|
simpllr |
|
| 87 |
|
f1ocnvfv2 |
|
| 88 |
85 86 87
|
syl2anc |
|
| 89 |
83 84 88
|
elrabd |
|
| 90 |
|
ssrab2 |
|
| 91 |
90
|
a1i |
|
| 92 |
15
|
ad3antrrr |
|
| 93 |
92
|
biimpa |
|
| 94 |
62
|
ad2antrr |
|
| 95 |
|
f1ocnvfv |
|
| 96 |
93 94 95
|
syl2anc |
|
| 97 |
|
simplrr |
|
| 98 |
|
eleq1 |
|
| 99 |
97 98
|
syl5ibrcom |
|
| 100 |
96 99
|
syld |
|
| 101 |
100
|
ralrimiva |
|
| 102 |
|
fveq1 |
|
| 103 |
102
|
eqeq1d |
|
| 104 |
103
|
ralrab |
|
| 105 |
101 104
|
sylibr |
|
| 106 |
|
ssrab |
|
| 107 |
91 105 106
|
sylanbrc |
|
| 108 |
39
|
mptpreima |
|
| 109 |
107 108
|
sseqtrrdi |
|
| 110 |
|
funmpt |
|
| 111 |
|
fvex |
|
| 112 |
111 39
|
dmmpti |
|
| 113 |
91 112
|
sseqtrrdi |
|
| 114 |
|
funimass3 |
|
| 115 |
110 113 114
|
sylancr |
|
| 116 |
109 115
|
mpbird |
|
| 117 |
|
eleq2 |
|
| 118 |
|
imaeq2 |
|
| 119 |
118
|
sseq1d |
|
| 120 |
117 119
|
anbi12d |
|
| 121 |
120
|
rspcev |
|
| 122 |
81 89 116 121
|
syl12anc |
|
| 123 |
122
|
expr |
|
| 124 |
43 123
|
sylbid |
|
| 125 |
124
|
ralrimiva |
|
| 126 |
24
|
ad2antrr |
|
| 127 |
12
|
ad2antrr |
|
| 128 |
|
simpr |
|
| 129 |
|
iscnp |
|
| 130 |
126 127 128 129
|
syl3anc |
|
| 131 |
36 125 130
|
mpbir2and |
|
| 132 |
131
|
ralrimiva |
|
| 133 |
|
cncnp |
|
| 134 |
24 12 133
|
syl2anc |
|
| 135 |
134
|
adantr |
|
| 136 |
35 132 135
|
mpbir2and |
|
| 137 |
|
fvconst2g |
|
| 138 |
26 137
|
sylan |
|
| 139 |
138
|
oveq2d |
|
| 140 |
136 139
|
eleqtrrd |
|
| 141 |
10 24 25 28 140
|
ptcn |
|
| 142 |
|
eqid |
|
| 143 |
5 142
|
grpinvf |
|
| 144 |
2 143
|
syl |
|
| 145 |
144
|
feqmptd |
|
| 146 |
1 5 142
|
symginv |
|
| 147 |
146
|
adantl |
|
| 148 |
32
|
feqmptd |
|
| 149 |
147 148
|
eqtrd |
|
| 150 |
149
|
mpteq2dva |
|
| 151 |
145 150
|
eqtrd |
|
| 152 |
|
xkopt |
|
| 153 |
26 152
|
mpancom |
|
| 154 |
153
|
oveq2d |
|
| 155 |
141 151 154
|
3eltr4d |
|
| 156 |
|
eqid |
|
| 157 |
156
|
xkotopon |
|
| 158 |
26 26 157
|
syl2anc |
|
| 159 |
|
frn |
|
| 160 |
2 143 159
|
3syl |
|
| 161 |
|
cndis |
|
| 162 |
12 161
|
mpdan |
|
| 163 |
21 162
|
sseqtrrd |
|
| 164 |
|
cnrest2 |
|
| 165 |
158 160 163 164
|
syl3anc |
|
| 166 |
155 165
|
mpbid |
|
| 167 |
153
|
oveq1d |
|
| 168 |
167 11
|
eqtrd |
|
| 169 |
168
|
oveq2d |
|
| 170 |
166 169
|
eleqtrd |
|
| 171 |
|
eqid |
|
| 172 |
171 142
|
istgp |
|
| 173 |
2 9 170 172
|
syl3anbrc |
|