Metamath Proof Explorer


Theorem ralrab

Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypothesis ralab.1 y=xφψ
Assertion ralrab xyA|φχxAψχ

Proof

Step Hyp Ref Expression
1 ralab.1 y=xφψ
2 1 elrab xyA|φxAψ
3 2 imbi1i xyA|φχxAψχ
4 impexp xAψχxAψχ
5 3 4 bitri xyA|φχxAψχ
6 5 ralbii2 xyA|φχxAψχ