| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcn.2 |
|
| 2 |
|
ptcn.3 |
|
| 3 |
|
ptcn.4 |
|
| 4 |
|
ptcn.5 |
|
| 5 |
|
ptcn.6 |
|
| 6 |
2
|
adantr |
|
| 7 |
4
|
ffvelcdmda |
|
| 8 |
|
toptopon2 |
|
| 9 |
7 8
|
sylib |
|
| 10 |
|
cnf2 |
|
| 11 |
6 9 5 10
|
syl3anc |
|
| 12 |
11
|
fvmptelcdm |
|
| 13 |
12
|
an32s |
|
| 14 |
13
|
ralrimiva |
|
| 15 |
3
|
adantr |
|
| 16 |
|
mptelixpg |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
mpbird |
|
| 19 |
1
|
ptuni |
|
| 20 |
3 4 19
|
syl2anc |
|
| 21 |
20
|
adantr |
|
| 22 |
18 21
|
eleqtrd |
|
| 23 |
22
|
fmpttd |
|
| 24 |
2
|
adantr |
|
| 25 |
3
|
adantr |
|
| 26 |
4
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
5
|
adantlr |
|
| 29 |
|
simplr |
|
| 30 |
|
toponuni |
|
| 31 |
2 30
|
syl |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
29 32
|
eleqtrd |
|
| 34 |
|
eqid |
|
| 35 |
34
|
cncnpi |
|
| 36 |
28 33 35
|
syl2anc |
|
| 37 |
1 24 25 26 27 36
|
ptcnp |
|
| 38 |
37
|
ralrimiva |
|
| 39 |
|
pttop |
|
| 40 |
3 4 39
|
syl2anc |
|
| 41 |
1 40
|
eqeltrid |
|
| 42 |
|
toptopon2 |
|
| 43 |
41 42
|
sylib |
|
| 44 |
|
cncnp |
|
| 45 |
2 43 44
|
syl2anc |
|
| 46 |
23 38 45
|
mpbir2and |
|