Metamath Proof Explorer


Theorem pttop

Description: The product topology is a topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion pttop AVF:ATop𝑡FTop

Proof

Step Hyp Ref Expression
1 ffn F:ATopFFnA
2 eqid x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
3 2 ptval AVFFnA𝑡F=topGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
4 1 3 sylan2 AVF:ATop𝑡F=topGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
5 2 ptbas AVF:ATopx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgyTopBases
6 tgcl x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgyTopBasestopGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgyTop
7 5 6 syl AVF:AToptopGenx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgyTop
8 4 7 eqeltrd AVF:ATop𝑡FTop