Metamath Proof Explorer


Theorem ptbas

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
Assertion ptbas AVF:ATopBTopBases

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 1 ptbasin2 AVF:ATopfiB=B
3 fibas fiBTopBases
4 2 3 eqeltrrdi AVF:ATopBTopBases