Metamath Proof Explorer


Theorem ptpjpre2

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
ptbasfi.2 X=nAFn
Assertion ptpjpre2 AVF:ATopIAUFIwXwI-1UB

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 ptbasfi.2 X=nAFn
3 2 ptpjpre1 AVF:ATopIAUFIwXwI-1U=nAifn=IUFn
4 simpll AVF:ATopIAUFIAV
5 snfi IFin
6 5 a1i AVF:ATopIAUFIIFin
7 simprr AVF:ATopIAUFIUFI
8 7 ad2antrr AVF:ATopIAUFInAn=IUFI
9 simpr AVF:ATopIAUFInAn=In=I
10 9 fveq2d AVF:ATopIAUFInAn=IFn=FI
11 8 10 eleqtrrd AVF:ATopIAUFInAn=IUFn
12 simplr AVF:ATopIAUFIF:ATop
13 12 ffvelcdmda AVF:ATopIAUFInAFnTop
14 eqid Fn=Fn
15 14 topopn FnTopFnFn
16 13 15 syl AVF:ATopIAUFInAFnFn
17 16 adantr AVF:ATopIAUFInA¬n=IFnFn
18 11 17 ifclda AVF:ATopIAUFInAifn=IUFnFn
19 eldifsni nAInI
20 19 neneqd nAI¬n=I
21 20 adantl AVF:ATopIAUFInAI¬n=I
22 21 iffalsed AVF:ATopIAUFInAIifn=IUFn=Fn
23 1 4 6 18 22 elptr2 AVF:ATopIAUFInAifn=IUFnB
24 3 23 eqeltrd AVF:ATopIAUFIwXwI-1UB