Metamath Proof Explorer


Theorem ptpjpre2

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
ptbasfi.2 𝑋 = X 𝑛𝐴 ( 𝐹𝑛 )
Assertion ptpjpre2 ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝐼 ) ) “ 𝑈 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 ptbasfi.2 𝑋 = X 𝑛𝐴 ( 𝐹𝑛 )
3 2 ptpjpre1 ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝐼 ) ) “ 𝑈 ) = X 𝑛𝐴 if ( 𝑛 = 𝐼 , 𝑈 , ( 𝐹𝑛 ) ) )
4 simpll ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → 𝐴𝑉 )
5 snfi { 𝐼 } ∈ Fin
6 5 a1i ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → { 𝐼 } ∈ Fin )
7 simprr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → 𝑈 ∈ ( 𝐹𝐼 ) )
8 7 ad2antrr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑈 ∈ ( 𝐹𝐼 ) )
9 simpr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑛 = 𝐼 )
10 9 fveq2d ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) ∧ 𝑛 = 𝐼 ) → ( 𝐹𝑛 ) = ( 𝐹𝐼 ) )
11 8 10 eleqtrrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑈 ∈ ( 𝐹𝑛 ) )
12 simplr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → 𝐹 : 𝐴 ⟶ Top )
13 12 ffvelrnda ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) → ( 𝐹𝑛 ) ∈ Top )
14 eqid ( 𝐹𝑛 ) = ( 𝐹𝑛 )
15 14 topopn ( ( 𝐹𝑛 ) ∈ Top → ( 𝐹𝑛 ) ∈ ( 𝐹𝑛 ) )
16 13 15 syl ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) → ( 𝐹𝑛 ) ∈ ( 𝐹𝑛 ) )
17 16 adantr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) ∧ ¬ 𝑛 = 𝐼 ) → ( 𝐹𝑛 ) ∈ ( 𝐹𝑛 ) )
18 11 17 ifclda ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛𝐴 ) → if ( 𝑛 = 𝐼 , 𝑈 , ( 𝐹𝑛 ) ) ∈ ( 𝐹𝑛 ) )
19 eldifsni ( 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) → 𝑛𝐼 )
20 19 neneqd ( 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) → ¬ 𝑛 = 𝐼 )
21 20 adantl ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) ) → ¬ 𝑛 = 𝐼 )
22 21 iffalsed ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) ) → if ( 𝑛 = 𝐼 , 𝑈 , ( 𝐹𝑛 ) ) = ( 𝐹𝑛 ) )
23 1 4 6 18 22 elptr2 ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → X 𝑛𝐴 if ( 𝑛 = 𝐼 , 𝑈 , ( 𝐹𝑛 ) ) ∈ 𝐵 )
24 3 23 eqeltrd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼𝐴𝑈 ∈ ( 𝐹𝐼 ) ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝐼 ) ) “ 𝑈 ) ∈ 𝐵 )