Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
2 |
|
elptr2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
elptr2.2 |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
4 |
|
elptr2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) |
5 |
|
elptr2.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝑆 = ∪ ( 𝐹 ‘ 𝑘 ) ) |
6 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) |
8 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ) |
9 |
6 7 8
|
cbvixp |
⊢ X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) |
12 |
11
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = 𝑆 ) |
13 |
10 4 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = 𝑆 ) |
14 |
13
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = X 𝑘 ∈ 𝐴 𝑆 ) |
15 |
9 14
|
eqtrid |
⊢ ( 𝜑 → X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 𝑆 ) |
16 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) |
17 |
11
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) → ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) Fn 𝐴 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) Fn 𝐴 ) |
19 |
13 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
21 |
6
|
nfel1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) |
22 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) |
23 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑘 ) ) |
24 |
8 23
|
eleq12d |
⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) ) |
25 |
21 22 24
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
26 |
20 25
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
27 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) → 𝑘 ∈ 𝐴 ) |
28 |
27 13
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = 𝑆 ) |
29 |
28 5
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
31 |
6
|
nfeq1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) |
32 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) |
33 |
23
|
unieqd |
⊢ ( 𝑦 = 𝑘 → ∪ ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
34 |
8 33
|
eqeq12d |
⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
35 |
31 32 34
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
36 |
30 35
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
37 |
1
|
elptr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑊 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ 𝐵 ) |
38 |
2 18 26 3 36 37
|
syl122anc |
⊢ ( 𝜑 → X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ 𝐵 ) |
39 |
15 38
|
eqeltrrd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ∈ 𝐵 ) |