Metamath Proof Explorer


Theorem elptr2

Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
elptr2.1 ( 𝜑𝐴𝑉 )
elptr2.2 ( 𝜑𝑊 ∈ Fin )
elptr2.3 ( ( 𝜑𝑘𝐴 ) → 𝑆 ∈ ( 𝐹𝑘 ) )
elptr2.4 ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝑆 = ( 𝐹𝑘 ) )
Assertion elptr2 ( 𝜑X 𝑘𝐴 𝑆𝐵 )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 elptr2.1 ( 𝜑𝐴𝑉 )
3 elptr2.2 ( 𝜑𝑊 ∈ Fin )
4 elptr2.3 ( ( 𝜑𝑘𝐴 ) → 𝑆 ∈ ( 𝐹𝑘 ) )
5 elptr2.4 ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → 𝑆 = ( 𝐹𝑘 ) )
6 nffvmpt1 𝑘 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 )
7 nfcv 𝑦 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 )
8 fveq2 ( 𝑦 = 𝑘 → ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) )
9 6 7 8 cbvixp X 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = X 𝑘𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 )
10 simpr ( ( 𝜑𝑘𝐴 ) → 𝑘𝐴 )
11 eqid ( 𝑘𝐴𝑆 ) = ( 𝑘𝐴𝑆 )
12 11 fvmpt2 ( ( 𝑘𝐴𝑆 ∈ ( 𝐹𝑘 ) ) → ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = 𝑆 )
13 10 4 12 syl2anc ( ( 𝜑𝑘𝐴 ) → ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = 𝑆 )
14 13 ixpeq2dva ( 𝜑X 𝑘𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = X 𝑘𝐴 𝑆 )
15 9 14 eqtrid ( 𝜑X 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = X 𝑘𝐴 𝑆 )
16 4 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝑆 ∈ ( 𝐹𝑘 ) )
17 11 fnmpt ( ∀ 𝑘𝐴 𝑆 ∈ ( 𝐹𝑘 ) → ( 𝑘𝐴𝑆 ) Fn 𝐴 )
18 16 17 syl ( 𝜑 → ( 𝑘𝐴𝑆 ) Fn 𝐴 )
19 13 4 eqeltrd ( ( 𝜑𝑘𝐴 ) → ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹𝑘 ) )
20 19 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹𝑘 ) )
21 6 nfel1 𝑘 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹𝑦 )
22 nfv 𝑦 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹𝑘 )
23 fveq2 ( 𝑦 = 𝑘 → ( 𝐹𝑦 ) = ( 𝐹𝑘 ) )
24 8 23 eleq12d ( 𝑦 = 𝑘 → ( ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹𝑦 ) ↔ ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹𝑘 ) ) )
25 21 22 24 cbvralw ( ∀ 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹𝑦 ) ↔ ∀ 𝑘𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹𝑘 ) )
26 20 25 sylibr ( 𝜑 → ∀ 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹𝑦 ) )
27 eldifi ( 𝑘 ∈ ( 𝐴𝑊 ) → 𝑘𝐴 )
28 27 13 sylan2 ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = 𝑆 )
29 28 5 eqtrd ( ( 𝜑𝑘 ∈ ( 𝐴𝑊 ) ) → ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
30 29 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴𝑊 ) ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
31 6 nfeq1 𝑘 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = ( 𝐹𝑦 )
32 nfv 𝑦 ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = ( 𝐹𝑘 )
33 23 unieqd ( 𝑦 = 𝑘 ( 𝐹𝑦 ) = ( 𝐹𝑘 ) )
34 8 33 eqeq12d ( 𝑦 = 𝑘 → ( ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) ↔ ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = ( 𝐹𝑘 ) ) )
35 31 32 34 cbvralw ( ∀ 𝑦 ∈ ( 𝐴𝑊 ) ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) ↔ ∀ 𝑘 ∈ ( 𝐴𝑊 ) ( ( 𝑘𝐴𝑆 ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
36 30 35 sylibr ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴𝑊 ) ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
37 1 elptr ( ( 𝐴𝑉 ∧ ( ( 𝑘𝐴𝑆 ) Fn 𝐴 ∧ ∀ 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹𝑦 ) ) ∧ ( 𝑊 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑊 ) ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) ) ) → X 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ 𝐵 )
38 2 18 26 3 36 37 syl122anc ( 𝜑X 𝑦𝐴 ( ( 𝑘𝐴𝑆 ) ‘ 𝑦 ) ∈ 𝐵 )
39 15 38 eqeltrrd ( 𝜑X 𝑘𝐴 𝑆𝐵 )