Step |
Hyp |
Ref |
Expression |
1 |
|
ptcn.2 |
⊢ 𝐾 = ( ∏t ‘ 𝐹 ) |
2 |
|
ptcn.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
ptcn.4 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
ptcn.5 |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) |
5 |
|
ptcn.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
7 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
8 |
|
toptopon2 |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
10 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
11 |
6 9 5 10
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
12 |
11
|
fvmptelrn |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
13 |
12
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
16 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
14 17
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) |
19 |
1
|
ptuni |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ Top ) → X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
20 |
3 4 19
|
syl2anc |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
22 |
18 21
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ ∪ 𝐾 ) |
23 |
22
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐾 ) |
24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐹 : 𝐼 ⟶ Top ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
28 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑧 ∈ 𝑋 ) |
30 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑋 = ∪ 𝐽 ) |
33 |
29 32
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑧 ∈ ∪ 𝐽 ) |
34 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
35 |
34
|
cncnpi |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑧 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
36 |
28 33 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
37 |
1 24 25 26 27 36
|
ptcnp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) |
38 |
37
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) |
39 |
|
pttop |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) |
40 |
3 4 39
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Top ) |
41 |
1 40
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
42 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
43 |
41 42
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
44 |
|
cncnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) ) ) |
45 |
2 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) ) ) |
46 |
23 38 45
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |