Metamath Proof Explorer


Theorem ptcnp

Description: If every projection of a function is continuous at D , then the function itself is continuous at D into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses ptcnp.2 𝐾 = ( ∏t𝐹 )
ptcnp.3 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
ptcnp.4 ( 𝜑𝐼𝑉 )
ptcnp.5 ( 𝜑𝐹 : 𝐼 ⟶ Top )
ptcnp.6 ( 𝜑𝐷𝑋 )
ptcnp.7 ( ( 𝜑𝑘𝐼 ) → ( 𝑥𝑋𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹𝑘 ) ) ‘ 𝐷 ) )
Assertion ptcnp ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ptcnp.2 𝐾 = ( ∏t𝐹 )
2 ptcnp.3 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 ptcnp.4 ( 𝜑𝐼𝑉 )
4 ptcnp.5 ( 𝜑𝐹 : 𝐼 ⟶ Top )
5 ptcnp.6 ( 𝜑𝐷𝑋 )
6 ptcnp.7 ( ( 𝜑𝑘𝐼 ) → ( 𝑥𝑋𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹𝑘 ) ) ‘ 𝐷 ) )
7 2 adantr ( ( 𝜑𝑘𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
8 4 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝐹𝑘 ) ∈ Top )
9 toptopon2 ( ( 𝐹𝑘 ) ∈ Top ↔ ( 𝐹𝑘 ) ∈ ( TopOn ‘ ( 𝐹𝑘 ) ) )
10 8 9 sylib ( ( 𝜑𝑘𝐼 ) → ( 𝐹𝑘 ) ∈ ( TopOn ‘ ( 𝐹𝑘 ) ) )
11 cnpf2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ ( TopOn ‘ ( 𝐹𝑘 ) ) ∧ ( 𝑥𝑋𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹𝑘 ) ) ‘ 𝐷 ) ) → ( 𝑥𝑋𝐴 ) : 𝑋 ( 𝐹𝑘 ) )
12 7 10 6 11 syl3anc ( ( 𝜑𝑘𝐼 ) → ( 𝑥𝑋𝐴 ) : 𝑋 ( 𝐹𝑘 ) )
13 12 fvmptelrn ( ( ( 𝜑𝑘𝐼 ) ∧ 𝑥𝑋 ) → 𝐴 ( 𝐹𝑘 ) )
14 13 an32s ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑘𝐼 ) → 𝐴 ( 𝐹𝑘 ) )
15 14 ralrimiva ( ( 𝜑𝑥𝑋 ) → ∀ 𝑘𝐼 𝐴 ( 𝐹𝑘 ) )
16 3 adantr ( ( 𝜑𝑥𝑋 ) → 𝐼𝑉 )
17 mptelixpg ( 𝐼𝑉 → ( ( 𝑘𝐼𝐴 ) ∈ X 𝑘𝐼 ( 𝐹𝑘 ) ↔ ∀ 𝑘𝐼 𝐴 ( 𝐹𝑘 ) ) )
18 16 17 syl ( ( 𝜑𝑥𝑋 ) → ( ( 𝑘𝐼𝐴 ) ∈ X 𝑘𝐼 ( 𝐹𝑘 ) ↔ ∀ 𝑘𝐼 𝐴 ( 𝐹𝑘 ) ) )
19 15 18 mpbird ( ( 𝜑𝑥𝑋 ) → ( 𝑘𝐼𝐴 ) ∈ X 𝑘𝐼 ( 𝐹𝑘 ) )
20 19 fmpttd ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) : 𝑋X 𝑘𝐼 ( 𝐹𝑘 ) )
21 df-3an ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) )
22 nfv 𝑘 ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) )
23 nfv 𝑘 ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) )
24 nfcv 𝑘 𝑋
25 nfmpt1 𝑘 ( 𝑘𝐼𝐴 )
26 24 25 nfmpt 𝑘 ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) )
27 nfcv 𝑘 𝐷
28 26 27 nffv 𝑘 ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 )
29 28 nfel1 𝑘 ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 )
30 23 29 nfan 𝑘 ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) )
31 22 30 nfan 𝑘 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) )
32 simprll ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → 𝑔 Fn 𝐼 )
33 simprlr ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) )
34 fveq2 ( 𝑛 = 𝑘 → ( 𝑔𝑛 ) = ( 𝑔𝑘 ) )
35 fveq2 ( 𝑛 = 𝑘 → ( 𝐹𝑛 ) = ( 𝐹𝑘 ) )
36 34 35 eleq12d ( 𝑛 = 𝑘 → ( ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ↔ ( 𝑔𝑘 ) ∈ ( 𝐹𝑘 ) ) )
37 36 rspccva ( ( ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ 𝑘𝐼 ) → ( 𝑔𝑘 ) ∈ ( 𝐹𝑘 ) )
38 33 37 sylan ( ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) ∧ 𝑘𝐼 ) → ( 𝑔𝑘 ) ∈ ( 𝐹𝑘 ) )
39 simprrl ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) )
40 39 simpld ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → 𝑤 ∈ Fin )
41 39 simprd ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) )
42 35 unieqd ( 𝑛 = 𝑘 ( 𝐹𝑛 ) = ( 𝐹𝑘 ) )
43 34 42 eqeq12d ( 𝑛 = 𝑘 → ( ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ↔ ( 𝑔𝑘 ) = ( 𝐹𝑘 ) ) )
44 43 rspccva ( ( ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ∧ 𝑘 ∈ ( 𝐼𝑤 ) ) → ( 𝑔𝑘 ) = ( 𝐹𝑘 ) )
45 41 44 sylan ( ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) ∧ 𝑘 ∈ ( 𝐼𝑤 ) ) → ( 𝑔𝑘 ) = ( 𝐹𝑘 ) )
46 simprrr ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) )
47 34 cbvixpv X 𝑛𝐼 ( 𝑔𝑛 ) = X 𝑘𝐼 ( 𝑔𝑘 )
48 46 47 eleqtrdi ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘𝐼 ( 𝑔𝑘 ) )
49 1 2 3 4 5 6 31 32 38 40 45 48 ptcnplem ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) )
50 49 anassrs ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) )
51 50 expr ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ) ∧ ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) )
52 51 rexlimdvaa ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ) → ( ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) ) )
53 52 impr ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) )
54 21 53 sylan2b ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) )
55 eleq2 ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 ↔ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) ) )
56 47 eqeq2i ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ↔ 𝑓 = X 𝑘𝐼 ( 𝑔𝑘 ) )
57 56 biimpi ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → 𝑓 = X 𝑘𝐼 ( 𝑔𝑘 ) )
58 57 sseq2d ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ↔ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) )
59 58 anbi2d ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → ( ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ↔ ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) )
60 59 rexbidv ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → ( ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ↔ ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) )
61 55 60 imbi12d ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → ( ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ↔ ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛𝐼 ( 𝑔𝑛 ) → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘𝐼 ( 𝑔𝑘 ) ) ) ) )
62 54 61 syl5ibrcom ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ) → ( 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) )
63 62 expimpd ( 𝜑 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) )
64 63 exlimdv ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) )
65 64 alrimiv ( 𝜑 → ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) )
66 eqeq1 ( 𝑎 = 𝑓 → ( 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ↔ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) )
67 66 anbi2d ( 𝑎 = 𝑓 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) ) )
68 67 exbidv ( 𝑎 = 𝑓 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) ) )
69 68 ralab ( ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ↔ ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑓 = X 𝑛𝐼 ( 𝑔𝑛 ) ) → ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) )
70 65 69 sylibr ( 𝜑 → ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) )
71 4 ffnd ( 𝜑𝐹 Fn 𝐼 )
72 eqid { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } = { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) }
73 72 ptval ( ( 𝐼𝑉𝐹 Fn 𝐼 ) → ( ∏t𝐹 ) = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } ) )
74 3 71 73 syl2anc ( 𝜑 → ( ∏t𝐹 ) = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } ) )
75 1 74 eqtrid ( 𝜑𝐾 = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } ) )
76 4 feqmptd ( 𝜑𝐹 = ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) )
77 76 fveq2d ( 𝜑 → ( ∏t𝐹 ) = ( ∏t ‘ ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) ) )
78 1 77 eqtrid ( 𝜑𝐾 = ( ∏t ‘ ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) ) )
79 10 ralrimiva ( 𝜑 → ∀ 𝑘𝐼 ( 𝐹𝑘 ) ∈ ( TopOn ‘ ( 𝐹𝑘 ) ) )
80 eqid ( ∏t ‘ ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) ) = ( ∏t ‘ ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) )
81 80 pttopon ( ( 𝐼𝑉 ∧ ∀ 𝑘𝐼 ( 𝐹𝑘 ) ∈ ( TopOn ‘ ( 𝐹𝑘 ) ) ) → ( ∏t ‘ ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) ) ∈ ( TopOn ‘ X 𝑘𝐼 ( 𝐹𝑘 ) ) )
82 3 79 81 syl2anc ( 𝜑 → ( ∏t ‘ ( 𝑘𝐼 ↦ ( 𝐹𝑘 ) ) ) ∈ ( TopOn ‘ X 𝑘𝐼 ( 𝐹𝑘 ) ) )
83 78 82 eqeltrd ( 𝜑𝐾 ∈ ( TopOn ‘ X 𝑘𝐼 ( 𝐹𝑘 ) ) )
84 2 75 83 5 tgcnp ( 𝜑 → ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ↔ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) : 𝑋X 𝑘𝐼 ( 𝐹𝑘 ) ∧ ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛𝐼 ( 𝑔𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼𝑤 ) ( 𝑔𝑛 ) = ( 𝐹𝑛 ) ) ∧ 𝑎 = X 𝑛𝐼 ( 𝑔𝑛 ) ) } ( ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧𝐽 ( 𝐷𝑧 ∧ ( ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) )
85 20 70 84 mpbir2and ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝑘𝐼𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) )