| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcnp.2 |
⊢ 𝐾 = ( ∏t ‘ 𝐹 ) |
| 2 |
|
ptcnp.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
ptcnp.4 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
ptcnp.5 |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) |
| 5 |
|
ptcnp.6 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) |
| 6 |
|
ptcnp.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) |
| 7 |
|
ptcnplem.1 |
⊢ Ⅎ 𝑘 𝜓 |
| 8 |
|
ptcnplem.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 Fn 𝐼 ) |
| 9 |
|
ptcnplem.3 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 10 |
|
ptcnplem.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ Fin ) |
| 11 |
|
ptcnplem.5 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 12 |
|
ptcnplem.6 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 13 |
|
inss2 |
⊢ ( 𝐼 ∩ 𝑊 ) ⊆ 𝑊 |
| 14 |
|
ssfi |
⊢ ( ( 𝑊 ∈ Fin ∧ ( 𝐼 ∩ 𝑊 ) ⊆ 𝑊 ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
| 15 |
10 13 14
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 17 |
16 7
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝜓 ) |
| 18 |
|
elinel1 |
⊢ ( 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) → 𝑘 ∈ 𝐼 ) |
| 19 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ 𝑋 ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 23 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 24 |
|
toptopon2 |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 26 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 27 |
22 25 6 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 28 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 29 |
28
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 30 |
27 29
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 31 |
30
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 32 |
28
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 33 |
21 31 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 34 |
33
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 35 |
34
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 38 |
37
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 39 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 40 |
39
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 41 |
36 38 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 42 |
35 41
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 43 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 45 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐼 |
| 46 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) |
| 47 |
45 46
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) |
| 48 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
| 49 |
47 48
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
| 50 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) |
| 51 |
50
|
mpteq2dv |
⊢ ( 𝑥 = 𝐷 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) |
| 53 |
51 52
|
eqeq12d |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ↔ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) ) |
| 54 |
49 53
|
rspc |
⊢ ( 𝐷 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) ) |
| 55 |
20 44 54
|
sylc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) |
| 56 |
55 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 57 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐼 ∈ 𝑉 ) |
| 58 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 59 |
57 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 60 |
56 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 61 |
60
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 62 |
|
cnpimaex |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 63 |
19 9 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 64 |
18 63
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 66 |
17 65
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 67 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( 𝐷 ∈ 𝑢 ↔ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
| 68 |
|
imaeq2 |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ) |
| 69 |
68
|
sseq1d |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
| 70 |
67 69
|
anbi12d |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 71 |
70
|
ac6sfi |
⊢ ( ( ( 𝐼 ∩ 𝑊 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 72 |
15 66 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 73 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 74 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 75 |
73 74
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 76 |
75
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) = ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ) |
| 77 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 78 |
2 77
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 79 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐽 ∈ Top ) |
| 80 |
|
frn |
⊢ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 → ran 𝑓 ⊆ 𝐽 ) |
| 81 |
80
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ran 𝑓 ⊆ 𝐽 ) |
| 82 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
| 83 |
|
ffn |
⊢ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
| 84 |
83
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
| 85 |
|
dffn4 |
⊢ ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ↔ 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) |
| 86 |
84 85
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) |
| 87 |
|
fofi |
⊢ ( ( ( 𝐼 ∩ 𝑊 ) ∈ Fin ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
| 88 |
82 86 87
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ran 𝑓 ∈ Fin ) |
| 89 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 90 |
89
|
rintopn |
⊢ ( ( 𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ∈ Fin ) → ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
| 91 |
79 81 88 90
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
| 92 |
76 91
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
| 93 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐷 ∈ 𝑋 ) |
| 94 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
| 95 |
94
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
| 96 |
95
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
| 97 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑘 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
| 98 |
97
|
ralrn |
⊢ ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) → ( ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
| 99 |
84 98
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
| 100 |
96 99
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ) |
| 101 |
|
elrint |
⊢ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ↔ ( 𝐷 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ) ) |
| 102 |
93 100 101
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) |
| 103 |
|
nfv |
⊢ Ⅎ 𝑘 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 |
| 104 |
17 103
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) |
| 105 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 106 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝜑 ) |
| 107 |
106 2
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 108 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) |
| 109 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) |
| 110 |
108 109
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝐽 ) |
| 111 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝐽 ) → ( 𝑓 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 112 |
107 110 111
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 113 |
109
|
elin1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑘 ∈ 𝐼 ) |
| 114 |
106 113 30
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 115 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
| 116 |
114 115
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
| 117 |
112 116
|
sseqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 118 |
|
funimass4 |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ ( 𝑓 ‘ 𝑘 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 119 |
105 117 118
|
sylancr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 120 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) |
| 121 |
120
|
nfel1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) |
| 122 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) |
| 123 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) |
| 124 |
123
|
eleq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 125 |
121 122 124
|
cbvralw |
⊢ ( ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 126 |
119 125
|
bitrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 127 |
|
inss1 |
⊢ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ 𝑋 |
| 128 |
|
ssralv |
⊢ ( ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 129 |
127 114 128
|
mpsyl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 130 |
|
inss2 |
⊢ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ∩ ran 𝑓 |
| 131 |
108 83
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
| 132 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 ) |
| 133 |
131 109 132
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 ) |
| 134 |
|
intss1 |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑘 ) ) |
| 135 |
133 134
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑘 ) ) |
| 136 |
130 135
|
sstrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑘 ) ) |
| 137 |
|
ssralv |
⊢ ( ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑘 ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 138 |
136 137
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 139 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 140 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) → 𝑥 ∈ 𝑋 ) |
| 141 |
140 32
|
sylan |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 142 |
141
|
eleq1d |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 143 |
142
|
biimpd |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 144 |
143
|
expimpd |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 145 |
144
|
ralimia |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 146 |
139 145
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 147 |
129 138 146
|
syl6an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 148 |
126 147
|
sylbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 149 |
148
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ( ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 150 |
104 149
|
ralimdaa |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 151 |
150
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 152 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 153 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) → 𝑘 ∈ 𝐼 ) |
| 154 |
140 31
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 155 |
154
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 156 |
152 153 155
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 157 |
|
eleq2 |
⊢ ( ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → ( 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 158 |
157
|
ralbidv |
⊢ ( ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 159 |
11 158
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 160 |
156 159
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 161 |
160
|
ex |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 162 |
17 161
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 163 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 164 |
|
inundif |
⊢ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) = 𝐼 |
| 165 |
164
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 166 |
|
ralunb |
⊢ ( ∀ 𝑘 ∈ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 167 |
165 166
|
bitr3i |
⊢ ( ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 168 |
151 163 167
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 169 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 170 |
168 169
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
| 171 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐼 ∈ 𝑉 ) |
| 172 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) |
| 173 |
172
|
nfel1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) |
| 174 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) |
| 175 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
| 176 |
175
|
eleq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 177 |
173 174 176
|
cbvralw |
⊢ ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 178 |
|
mptexg |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 179 |
140 178 40
|
syl2anr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 180 |
179
|
eleq1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 181 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 183 |
180 182
|
bitrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 184 |
183
|
ralbidva |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 185 |
177 184
|
bitrid |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 186 |
171 185
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
| 187 |
170 186
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 188 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
| 189 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 190 |
189
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 191 |
190
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
| 192 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V → dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = 𝑋 ) |
| 193 |
191 192
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = 𝑋 ) |
| 194 |
127 193
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ) |
| 195 |
|
funimass4 |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∧ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 196 |
188 194 195
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 197 |
187 196
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
| 198 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ) |
| 199 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ) |
| 200 |
199
|
sseq1d |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 201 |
198 200
|
anbi12d |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 202 |
201
|
rspcev |
⊢ ( ( ( 𝑋 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 203 |
92 102 197 202
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
| 204 |
72 203
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |