| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdstopn.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdstopn.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
prdstopn.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 4 |
|
prdstopn.r |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 5 |
|
prdstopn.o |
⊢ 𝑂 = ( TopOpen ‘ 𝑌 ) |
| 6 |
|
fnex |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V ) |
| 7 |
4 3 6
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 9 |
|
eqidd |
⊢ ( 𝜑 → dom 𝑅 = dom 𝑅 ) |
| 10 |
|
eqid |
⊢ ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 ) |
| 11 |
1 2 7 8 9 10
|
prdstset |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 12 |
|
topnfn |
⊢ TopOpen Fn V |
| 13 |
|
dffn2 |
⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 : 𝐼 ⟶ V ) |
| 14 |
4 13
|
sylib |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 15 |
|
fnfco |
⊢ ( ( TopOpen Fn V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 16 |
12 14 15
|
sylancr |
⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 17 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } |
| 18 |
17
|
ptval |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 19 |
3 16 18
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 20 |
19
|
unieqd |
⊢ ( 𝜑 → ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ∪ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 21 |
|
fvco2 |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 22 |
4 21
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 24 |
|
eqid |
⊢ ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) = ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 25 |
23 24
|
topnval |
⊢ ( ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) ↾t ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 26 |
|
restsspw |
⊢ ( ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) ↾t ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ⊆ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 27 |
25 26
|
eqsstrri |
⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ⊆ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 28 |
22 27
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ⊆ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 29 |
28
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 30 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑦 ) ∈ V |
| 31 |
30
|
elpw |
⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ↔ ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 32 |
29 31
|
imbitrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 33 |
32
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 34 |
|
simpl2 |
⊢ ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) |
| 35 |
33 34
|
impel |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 36 |
|
ss2ixp |
⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) → X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) |
| 39 |
1 8 2 3 4
|
prdsbas2 |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → ( Base ‘ 𝑌 ) = X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 41 |
37 38 40
|
3sstr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) |
| 42 |
41
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) ) |
| 43 |
42
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) ) |
| 44 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ( Base ‘ 𝑌 ) ↔ 𝑥 ⊆ ( Base ‘ 𝑌 ) ) |
| 45 |
43 44
|
imbitrrdi |
⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝑌 ) ) ) |
| 46 |
45
|
abssdv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) ) |
| 47 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
| 48 |
47
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑌 ) ∈ V |
| 49 |
48
|
ssex |
⊢ ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ∈ V ) |
| 50 |
|
unitg |
⊢ ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ∈ V → ∪ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) = ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 51 |
46 49 50
|
3syl |
⊢ ( 𝜑 → ∪ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) = ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 52 |
20 51
|
eqtrd |
⊢ ( 𝜑 → ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 53 |
|
sspwuni |
⊢ ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) ↔ ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ ( Base ‘ 𝑌 ) ) |
| 54 |
46 53
|
sylib |
⊢ ( 𝜑 → ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ ( Base ‘ 𝑌 ) ) |
| 55 |
52 54
|
eqsstrd |
⊢ ( 𝜑 → ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ ( Base ‘ 𝑌 ) ) |
| 56 |
|
sspwuni |
⊢ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ↔ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ ( Base ‘ 𝑌 ) ) |
| 57 |
55 56
|
sylibr |
⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ) |
| 58 |
11 57
|
eqsstrd |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ) |
| 59 |
8 10
|
topnid |
⊢ ( ( TopSet ‘ 𝑌 ) ⊆ 𝒫 ( Base ‘ 𝑌 ) → ( TopSet ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) ) |
| 60 |
58 59
|
syl |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) ) |
| 61 |
60 5
|
eqtr4di |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = 𝑂 ) |
| 62 |
61 11
|
eqtr3d |
⊢ ( 𝜑 → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |