Metamath Proof Explorer


Theorem prdstps

Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdstopn.s ( 𝜑𝑆𝑉 )
prdstopn.i ( 𝜑𝐼𝑊 )
prdstps.r ( 𝜑𝑅 : 𝐼 ⟶ TopSp )
Assertion prdstps ( 𝜑𝑌 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 prdstopn.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdstopn.s ( 𝜑𝑆𝑉 )
3 prdstopn.i ( 𝜑𝐼𝑊 )
4 prdstps.r ( 𝜑𝑅 : 𝐼 ⟶ TopSp )
5 4 ffvelrnda ( ( 𝜑𝑥𝐼 ) → ( 𝑅𝑥 ) ∈ TopSp )
6 eqid ( Base ‘ ( 𝑅𝑥 ) ) = ( Base ‘ ( 𝑅𝑥 ) )
7 eqid ( TopOpen ‘ ( 𝑅𝑥 ) ) = ( TopOpen ‘ ( 𝑅𝑥 ) )
8 6 7 istps ( ( 𝑅𝑥 ) ∈ TopSp ↔ ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) )
9 5 8 sylib ( ( 𝜑𝑥𝐼 ) → ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) )
10 9 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) )
11 eqid ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) = ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) )
12 11 pttopon ( ( 𝐼𝑊 ∧ ∀ 𝑥𝐼 ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) ) → ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) )
13 3 10 12 syl2anc ( 𝜑 → ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) )
14 fex ( ( 𝑅 : 𝐼 ⟶ TopSp ∧ 𝐼𝑊 ) → 𝑅 ∈ V )
15 4 3 14 syl2anc ( 𝜑𝑅 ∈ V )
16 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
17 4 fdmd ( 𝜑 → dom 𝑅 = 𝐼 )
18 eqid ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 )
19 1 2 15 16 17 18 prdstset ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
20 topnfn TopOpen Fn V
21 dffn2 ( TopOpen Fn V ↔ TopOpen : V ⟶ V )
22 20 21 mpbi TopOpen : V ⟶ V
23 ssv TopSp ⊆ V
24 fss ( ( 𝑅 : 𝐼 ⟶ TopSp ∧ TopSp ⊆ V ) → 𝑅 : 𝐼 ⟶ V )
25 4 23 24 sylancl ( 𝜑𝑅 : 𝐼 ⟶ V )
26 fcompt ( ( TopOpen : V ⟶ V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) = ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) )
27 22 25 26 sylancr ( 𝜑 → ( TopOpen ∘ 𝑅 ) = ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) )
28 27 fveq2d ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) )
29 19 28 eqtrd ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) )
30 1 2 15 16 17 prdsbas ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )
31 30 fveq2d ( 𝜑 → ( TopOn ‘ ( Base ‘ 𝑌 ) ) = ( TopOn ‘ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) )
32 13 29 31 3eltr4d ( 𝜑 → ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) )
33 16 18 tsettps ( ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) → 𝑌 ∈ TopSp )
34 32 33 syl ( 𝜑𝑌 ∈ TopSp )