| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdstopn.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdstopn.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
prdstopn.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 4 |
|
prdstps.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopSp ) |
| 5 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ TopSp ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
| 7 |
|
eqid |
⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) |
| 8 |
6 7
|
istps |
⊢ ( ( 𝑅 ‘ 𝑥 ) ∈ TopSp ↔ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 9 |
5 8
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 12 |
11
|
pttopon |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ∀ 𝑥 ∈ 𝐼 ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 13 |
3 10 12
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 14 |
4 3
|
fexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 16 |
4
|
fdmd |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 17 |
|
eqid |
⊢ ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 ) |
| 18 |
1 2 14 15 16 17
|
prdstset |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 19 |
|
topnfn |
⊢ TopOpen Fn V |
| 20 |
|
dffn2 |
⊢ ( TopOpen Fn V ↔ TopOpen : V ⟶ V ) |
| 21 |
19 20
|
mpbi |
⊢ TopOpen : V ⟶ V |
| 22 |
|
ssv |
⊢ TopSp ⊆ V |
| 23 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ TopSp ∧ TopSp ⊆ V ) → 𝑅 : 𝐼 ⟶ V ) |
| 24 |
4 22 23
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 25 |
|
fcompt |
⊢ ( ( TopOpen : V ⟶ V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 26 |
21 24 25
|
sylancr |
⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
| 28 |
18 27
|
eqtrd |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
| 29 |
1 2 14 15 16
|
prdsbas |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ ( Base ‘ 𝑌 ) ) = ( TopOn ‘ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 31 |
13 28 30
|
3eltr4d |
⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 32 |
15 17
|
tsettps |
⊢ ( ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) → 𝑌 ∈ TopSp ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ TopSp ) |