Metamath Proof Explorer


Theorem iscnp

Description: The predicate "the class F is a continuous function from topology J to topology K at point P ". Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion iscnp JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxFxy

Proof

Step Hyp Ref Expression
1 cnpval JTopOnXKTopOnYPXJCnPKP=fYX|yKfPyxJPxfxy
2 1 eleq2d JTopOnXKTopOnYPXFJCnPKPFfYX|yKfPyxJPxfxy
3 fveq1 f=FfP=FP
4 3 eleq1d f=FfPyFPy
5 imaeq1 f=Ffx=Fx
6 5 sseq1d f=FfxyFxy
7 6 anbi2d f=FPxfxyPxFxy
8 7 rexbidv f=FxJPxfxyxJPxFxy
9 4 8 imbi12d f=FfPyxJPxfxyFPyxJPxFxy
10 9 ralbidv f=FyKfPyxJPxfxyyKFPyxJPxFxy
11 10 elrab FfYX|yKfPyxJPxfxyFYXyKFPyxJPxFxy
12 toponmax KTopOnYYK
13 toponmax JTopOnXXJ
14 elmapg YKXJFYXF:XY
15 12 13 14 syl2anr JTopOnXKTopOnYFYXF:XY
16 15 anbi1d JTopOnXKTopOnYFYXyKFPyxJPxFxyF:XYyKFPyxJPxFxy
17 11 16 bitrid JTopOnXKTopOnYFfYX|yKfPyxJPxfxyF:XYyKFPyxJPxFxy
18 17 3adant3 JTopOnXKTopOnYPXFfYX|yKfPyxJPxfxyF:XYyKFPyxJPxFxy
19 2 18 bitrd JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxFxy