Metamath Proof Explorer


Theorem symgtgp

Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015) (Proof shortened by AV, 30-Mar-2024)

Ref Expression
Hypothesis symgtgp.g 𝐺 = ( SymGrp ‘ 𝐴 )
Assertion symgtgp ( 𝐴𝑉𝐺 ∈ TopGrp )

Proof

Step Hyp Ref Expression
1 symgtgp.g 𝐺 = ( SymGrp ‘ 𝐴 )
2 1 symggrp ( 𝐴𝑉𝐺 ∈ Grp )
3 eqid ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 )
4 3 efmndtmd ( 𝐴𝑉 → ( EndoFMnd ‘ 𝐴 ) ∈ TopMnd )
5 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
6 3 1 5 symgsubmefmnd ( 𝐴𝑉 → ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) )
7 1 5 3 symgressbas 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s ( Base ‘ 𝐺 ) )
8 7 submtmd ( ( ( EndoFMnd ‘ 𝐴 ) ∈ TopMnd ∧ ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) → 𝐺 ∈ TopMnd )
9 4 6 8 syl2anc ( 𝐴𝑉𝐺 ∈ TopMnd )
10 eqid ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) )
11 1 5 symgtopn ( 𝐴𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) = ( TopOpen ‘ 𝐺 ) )
12 distopon ( 𝐴𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) )
13 10 pttoponconst ( ( 𝐴𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴m 𝐴 ) ) )
14 12 13 mpdan ( 𝐴𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴m 𝐴 ) ) )
15 1 5 elsymgbas ( 𝐴𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴1-1-onto𝐴 ) )
16 f1of ( 𝑥 : 𝐴1-1-onto𝐴𝑥 : 𝐴𝐴 )
17 elmapg ( ( 𝐴𝑉𝐴𝑉 ) → ( 𝑥 ∈ ( 𝐴m 𝐴 ) ↔ 𝑥 : 𝐴𝐴 ) )
18 17 anidms ( 𝐴𝑉 → ( 𝑥 ∈ ( 𝐴m 𝐴 ) ↔ 𝑥 : 𝐴𝐴 ) )
19 16 18 syl5ibr ( 𝐴𝑉 → ( 𝑥 : 𝐴1-1-onto𝐴𝑥 ∈ ( 𝐴m 𝐴 ) ) )
20 15 19 sylbid ( 𝐴𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) → 𝑥 ∈ ( 𝐴m 𝐴 ) ) )
21 20 ssrdv ( 𝐴𝑉 → ( Base ‘ 𝐺 ) ⊆ ( 𝐴m 𝐴 ) )
22 resttopon ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴m 𝐴 ) ) ∧ ( Base ‘ 𝐺 ) ⊆ ( 𝐴m 𝐴 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) )
23 14 21 22 syl2anc ( 𝐴𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) )
24 11 23 eqeltrrd ( 𝐴𝑉 → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) )
25 id ( 𝐴𝑉𝐴𝑉 )
26 distop ( 𝐴𝑉 → 𝒫 𝐴 ∈ Top )
27 fconst6g ( 𝒫 𝐴 ∈ Top → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top )
28 26 27 syl ( 𝐴𝑉 → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top )
29 15 biimpa ( ( 𝐴𝑉𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴1-1-onto𝐴 )
30 f1ocnv ( 𝑥 : 𝐴1-1-onto𝐴 𝑥 : 𝐴1-1-onto𝐴 )
31 f1of ( 𝑥 : 𝐴1-1-onto𝐴 𝑥 : 𝐴𝐴 )
32 29 30 31 3syl ( ( 𝐴𝑉𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴𝐴 )
33 32 ffvelrnda ( ( ( 𝐴𝑉𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦𝐴 ) → ( 𝑥𝑦 ) ∈ 𝐴 )
34 33 an32s ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥𝑦 ) ∈ 𝐴 )
35 34 fmpttd ( ( 𝐴𝑉𝑦𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 )
36 35 adantr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 )
37 cnveq ( 𝑥 = 𝑓 𝑥 = 𝑓 )
38 37 fveq1d ( 𝑥 = 𝑓 → ( 𝑥𝑦 ) = ( 𝑓𝑦 ) )
39 eqid ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) )
40 fvex ( 𝑓𝑦 ) ∈ V
41 38 39 40 fvmpt ( 𝑓 ∈ ( Base ‘ 𝐺 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) = ( 𝑓𝑦 ) )
42 41 ad2antlr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) = ( 𝑓𝑦 ) )
43 42 eleq1d ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 ↔ ( 𝑓𝑦 ) ∈ 𝑡 ) )
44 eqid ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) = ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) )
45 44 mptiniseg ( 𝑦 ∈ V → ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) “ { 𝑦 } ) = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } )
46 45 elv ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) “ { 𝑦 } ) = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 }
47 eqid ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) )
48 14 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴m 𝐴 ) ) )
49 21 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) ⊆ ( 𝐴m 𝐴 ) )
50 toponuni ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴m 𝐴 ) ) → ( 𝐴m 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) )
51 mpteq1 ( ( 𝐴m 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) → ( 𝑢 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) = ( 𝑢 ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) )
52 48 50 51 3syl ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) = ( 𝑢 ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) )
53 simpll ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝐴𝑉 )
54 28 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top )
55 1 5 elsymgbas ( 𝐴𝑉 → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ↔ 𝑓 : 𝐴1-1-onto𝐴 ) )
56 55 adantr ( ( 𝐴𝑉𝑦𝐴 ) → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ↔ 𝑓 : 𝐴1-1-onto𝐴 ) )
57 56 biimpa ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴1-1-onto𝐴 )
58 f1ocnv ( 𝑓 : 𝐴1-1-onto𝐴 𝑓 : 𝐴1-1-onto𝐴 )
59 f1of ( 𝑓 : 𝐴1-1-onto𝐴 𝑓 : 𝐴𝐴 )
60 57 58 59 3syl ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴𝐴 )
61 simplr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑦𝐴 )
62 60 61 ffvelrnd ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓𝑦 ) ∈ 𝐴 )
63 eqid ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) )
64 63 10 ptpjcn ( ( 𝐴𝑉 ∧ ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ∧ ( 𝑓𝑦 ) ∈ 𝐴 ) → ( 𝑢 ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( 𝑓𝑦 ) ) ) )
65 53 54 62 64 syl3anc ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( 𝑓𝑦 ) ) ) )
66 26 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝒫 𝐴 ∈ Top )
67 fvconst2g ( ( 𝒫 𝐴 ∈ Top ∧ ( 𝑓𝑦 ) ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( 𝑓𝑦 ) ) = 𝒫 𝐴 )
68 66 62 67 syl2anc ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( 𝑓𝑦 ) ) = 𝒫 𝐴 )
69 68 oveq2d ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( 𝑓𝑦 ) ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) )
70 65 69 eleqtrd ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) )
71 52 70 eqeltrd ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) )
72 47 48 49 71 cnmpt1res ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) )
73 11 oveq1d ( 𝐴𝑉 → ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) )
74 73 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) )
75 72 74 eleqtrd ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) )
76 snelpwi ( 𝑦𝐴 → { 𝑦 } ∈ 𝒫 𝐴 )
77 76 ad2antlr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → { 𝑦 } ∈ 𝒫 𝐴 )
78 cnima ( ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ∧ { 𝑦 } ∈ 𝒫 𝐴 ) → ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) “ { 𝑦 } ) ∈ ( TopOpen ‘ 𝐺 ) )
79 75 77 78 syl2anc ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( 𝑓𝑦 ) ) ) “ { 𝑦 } ) ∈ ( TopOpen ‘ 𝐺 ) )
80 46 79 eqeltrrid ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) )
81 80 adantr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) )
82 fveq1 ( 𝑢 = 𝑓 → ( 𝑢 ‘ ( 𝑓𝑦 ) ) = ( 𝑓 ‘ ( 𝑓𝑦 ) ) )
83 82 eqeq1d ( 𝑢 = 𝑓 → ( ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 ↔ ( 𝑓 ‘ ( 𝑓𝑦 ) ) = 𝑦 ) )
84 simplr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) )
85 57 adantr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → 𝑓 : 𝐴1-1-onto𝐴 )
86 simpllr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → 𝑦𝐴 )
87 f1ocnvfv2 ( ( 𝑓 : 𝐴1-1-onto𝐴𝑦𝐴 ) → ( 𝑓 ‘ ( 𝑓𝑦 ) ) = 𝑦 )
88 85 86 87 syl2anc ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ( 𝑓 ‘ ( 𝑓𝑦 ) ) = 𝑦 )
89 83 84 88 elrabd ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } )
90 ssrab2 { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 )
91 90 a1i ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) )
92 15 ad3antrrr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴1-1-onto𝐴 ) )
93 92 biimpa ( ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴1-1-onto𝐴 )
94 62 ad2antrr ( ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓𝑦 ) ∈ 𝐴 )
95 f1ocnvfv ( ( 𝑥 : 𝐴1-1-onto𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝐴 ) → ( ( 𝑥 ‘ ( 𝑓𝑦 ) ) = 𝑦 → ( 𝑥𝑦 ) = ( 𝑓𝑦 ) ) )
96 93 94 95 syl2anc ( ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ‘ ( 𝑓𝑦 ) ) = 𝑦 → ( 𝑥𝑦 ) = ( 𝑓𝑦 ) ) )
97 simplrr ( ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓𝑦 ) ∈ 𝑡 )
98 eleq1 ( ( 𝑥𝑦 ) = ( 𝑓𝑦 ) → ( ( 𝑥𝑦 ) ∈ 𝑡 ↔ ( 𝑓𝑦 ) ∈ 𝑡 ) )
99 97 98 syl5ibrcom ( ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥𝑦 ) = ( 𝑓𝑦 ) → ( 𝑥𝑦 ) ∈ 𝑡 ) )
100 96 99 syld ( ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ‘ ( 𝑓𝑦 ) ) = 𝑦 → ( 𝑥𝑦 ) ∈ 𝑡 ) )
101 100 ralrimiva ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ ( 𝑓𝑦 ) ) = 𝑦 → ( 𝑥𝑦 ) ∈ 𝑡 ) )
102 fveq1 ( 𝑢 = 𝑥 → ( 𝑢 ‘ ( 𝑓𝑦 ) ) = ( 𝑥 ‘ ( 𝑓𝑦 ) ) )
103 102 eqeq1d ( 𝑢 = 𝑥 → ( ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 ↔ ( 𝑥 ‘ ( 𝑓𝑦 ) ) = 𝑦 ) )
104 103 ralrab ( ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ( 𝑥𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ ( 𝑓𝑦 ) ) = 𝑦 → ( 𝑥𝑦 ) ∈ 𝑡 ) )
105 101 104 sylibr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ( 𝑥𝑦 ) ∈ 𝑡 )
106 ssrab ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑥𝑦 ) ∈ 𝑡 } ↔ ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ( 𝑥𝑦 ) ∈ 𝑡 ) )
107 91 105 106 sylanbrc ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑥𝑦 ) ∈ 𝑡 } )
108 39 mptpreima ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑡 ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑥𝑦 ) ∈ 𝑡 }
109 107 108 sseqtrrdi ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑡 ) )
110 funmpt Fun ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) )
111 fvex ( 𝑥𝑦 ) ∈ V
112 111 39 dmmpti dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) = ( Base ‘ 𝐺 )
113 91 112 sseqtrrdi ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) )
114 funimass3 ( ( Fun ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∧ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ↔ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑡 ) ) )
115 110 113 114 sylancr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ↔ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ⊆ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑡 ) ) )
116 109 115 mpbird ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 )
117 eleq2 ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } → ( 𝑓𝑣𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) )
118 imaeq2 ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) )
119 118 sseq1d ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) )
120 117 119 anbi12d ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } → ( ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ↔ ( 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) )
121 120 rspcev ( ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ∧ ( 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( 𝑓𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) )
122 81 89 116 121 syl12anc ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( 𝑓𝑦 ) ∈ 𝑡 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) )
123 122 expr ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( 𝑓𝑦 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) )
124 43 123 sylbid ( ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) )
125 124 ralrimiva ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) )
126 24 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) )
127 12 ad2antrr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) )
128 simpr ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) )
129 iscnp ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) ) )
130 126 127 128 129 syl3anc ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) ) )
131 36 125 130 mpbir2and ( ( ( 𝐴𝑉𝑦𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) )
132 131 ralrimiva ( ( 𝐴𝑉𝑦𝐴 ) → ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) )
133 cncnp ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) )
134 24 12 133 syl2anc ( 𝐴𝑉 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) )
135 134 adantr ( ( 𝐴𝑉𝑦𝐴 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) )
136 35 132 135 mpbir2and ( ( 𝐴𝑉𝑦𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) )
137 fvconst2g ( ( 𝒫 𝐴 ∈ Top ∧ 𝑦𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) = 𝒫 𝐴 )
138 26 137 sylan ( ( 𝐴𝑉𝑦𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) = 𝒫 𝐴 )
139 138 oveq2d ( ( 𝐴𝑉𝑦𝐴 ) → ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) )
140 136 139 eleqtrrd ( ( 𝐴𝑉𝑦𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) ) )
141 10 24 25 28 140 ptcn ( 𝐴𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦𝐴 ↦ ( 𝑥𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) )
142 eqid ( invg𝐺 ) = ( invg𝐺 )
143 5 142 grpinvf ( 𝐺 ∈ Grp → ( invg𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) )
144 2 143 syl ( 𝐴𝑉 → ( invg𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) )
145 144 feqmptd ( 𝐴𝑉 → ( invg𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg𝐺 ) ‘ 𝑥 ) ) )
146 1 5 142 symginv ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ( ( invg𝐺 ) ‘ 𝑥 ) = 𝑥 )
147 146 adantl ( ( 𝐴𝑉𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg𝐺 ) ‘ 𝑥 ) = 𝑥 )
148 32 feqmptd ( ( 𝐴𝑉𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 = ( 𝑦𝐴 ↦ ( 𝑥𝑦 ) ) )
149 147 148 eqtrd ( ( 𝐴𝑉𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg𝐺 ) ‘ 𝑥 ) = ( 𝑦𝐴 ↦ ( 𝑥𝑦 ) ) )
150 149 mpteq2dva ( 𝐴𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦𝐴 ↦ ( 𝑥𝑦 ) ) ) )
151 145 150 eqtrd ( 𝐴𝑉 → ( invg𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦𝐴 ↦ ( 𝑥𝑦 ) ) ) )
152 xkopt ( ( 𝒫 𝐴 ∈ Top ∧ 𝐴𝑉 ) → ( 𝒫 𝐴ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) )
153 26 152 mpancom ( 𝐴𝑉 → ( 𝒫 𝐴ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) )
154 153 oveq2d ( 𝐴𝑉 → ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴ko 𝒫 𝐴 ) ) = ( ( TopOpen ‘ 𝐺 ) Cn ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) )
155 141 151 154 3eltr4d ( 𝐴𝑉 → ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴ko 𝒫 𝐴 ) ) )
156 eqid ( 𝒫 𝐴ko 𝒫 𝐴 ) = ( 𝒫 𝐴ko 𝒫 𝐴 )
157 156 xkotopon ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top ) → ( 𝒫 𝐴ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) )
158 26 26 157 syl2anc ( 𝐴𝑉 → ( 𝒫 𝐴ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) )
159 frn ( ( invg𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) → ran ( invg𝐺 ) ⊆ ( Base ‘ 𝐺 ) )
160 2 143 159 3syl ( 𝐴𝑉 → ran ( invg𝐺 ) ⊆ ( Base ‘ 𝐺 ) )
161 cndis ( ( 𝐴𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴m 𝐴 ) )
162 12 161 mpdan ( 𝐴𝑉 → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴m 𝐴 ) )
163 21 162 sseqtrrd ( 𝐴𝑉 → ( Base ‘ 𝐺 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) )
164 cnrest2 ( ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ∧ ran ( invg𝐺 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) → ( ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴ko 𝒫 𝐴 ) ) ↔ ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) )
165 158 160 163 164 syl3anc ( 𝐴𝑉 → ( ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴ko 𝒫 𝐴 ) ) ↔ ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) )
166 155 165 mpbid ( 𝐴𝑉 → ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) )
167 153 oveq1d ( 𝐴𝑉 → ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) )
168 167 11 eqtrd ( 𝐴𝑉 → ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) = ( TopOpen ‘ 𝐺 ) )
169 168 oveq2d ( 𝐴𝑉 → ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) = ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) )
170 166 169 eleqtrd ( 𝐴𝑉 → ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) )
171 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
172 171 142 istgp ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) )
173 2 9 170 172 syl3anbrc ( 𝐴𝑉𝐺 ∈ TopGrp )