| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgtgp.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
1
|
submmnd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ Mnd ) |
| 4 |
|
tmdtps |
⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopSp ) |
| 5 |
|
resstps |
⊢ ( ( 𝐺 ∈ TopSp ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) |
| 7 |
1 6
|
eqeltrid |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopSp ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 10 |
|
eqid |
⊢ ( +𝑓 ‘ 𝐻 ) = ( +𝑓 ‘ 𝐻 ) |
| 11 |
8 9 10
|
plusffval |
⊢ ( +𝑓 ‘ 𝐻 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 12 |
1
|
submbas |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 15 |
1 14
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 17 |
16
|
oveqd |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 18 |
13 13 17
|
mpoeq123dv |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
| 19 |
11 18
|
eqtr4id |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +𝑓 ‘ 𝐻 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 20 |
|
eqid |
⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) |
| 21 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 23 |
21 22
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 25 |
22
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 |
|
eqid |
⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) |
| 28 |
22 14 27
|
plusffval |
⊢ ( +𝑓 ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 29 |
21 27
|
tmdcn |
⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 30 |
28 29
|
eqeltrrid |
⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 32 |
20 24 26 20 24 26 31
|
cnmpt2res |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 33 |
19 32
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 34 |
8 10
|
mndplusf |
⊢ ( 𝐻 ∈ Mnd → ( +𝑓 ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ) |
| 35 |
|
frn |
⊢ ( ( +𝑓 ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) → ran ( +𝑓 ‘ 𝐻 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 36 |
3 34 35
|
3syl |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ran ( +𝑓 ‘ 𝐻 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 37 |
36 13
|
sseqtrrd |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ran ( +𝑓 ‘ 𝐻 ) ⊆ 𝑆 ) |
| 38 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ran ( +𝑓 ‘ 𝐻 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 39 |
24 37 26 38
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 40 |
33 39
|
mpbid |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) |
| 41 |
1 21
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( TopOpen ‘ 𝐻 ) |
| 42 |
10 41
|
istmd |
⊢ ( 𝐻 ∈ TopMnd ↔ ( 𝐻 ∈ Mnd ∧ 𝐻 ∈ TopSp ∧ ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 43 |
3 7 40 42
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |